
[TODO: External cover]

License cb This thesis is released under the CC BY 4.0 (Creative Commons “Attribution”) license.

Colophon This thesis was composed with LuaLATEX (LuaHBTeX, Version 1.22.0 – TeX Live 2025) using a
custom class tlbook developped for the occasion (credit is due to the kabook class and Ken Arroyo Ohori’s PhD
thesis for the inspiration, themselves based on Edward Tufte’s Beautiful Evidence). Figures were created with
PGF/TikZ, and the bibliography with the multiscript branch of BibLATEX/Biber.
Themain typeface is David Jonathan Ross’s FERN; JetBrains Mono andNewComputerModern are respectively

used for monospaced text andmathematics; other scripts use Gentium Plus (Cyrillic and Greek) and LXGW WenKai/

霞鹜文楷 (Chinese characters).

Draft: June 5, 2025 at 14:45.

https://creativecommons.org/licenses/by/4.0/

PhD Thesis

Soficity of multidimensional subshifts

Antonin Callard

Acknowledgements

Draft: June 5, 2025 at 14:45. vii

Table of contents

Acknowledgements vii

Table of contents ix

1 Introduction 1

GENTLE DEFINITIONS 7
2 Notations and conventions 9
2.1 General mathematics 9
2.2 Multivariate analysis 10

3 Symbolic dynamics 13
3.1 Subshifts 13

3.1.1 Patterns and configurations 13
3.1.2 Subshifts 14
3.1.3 Operations on subshifts 15

3.2 Topology 16
3.2.1 Product topology 16
3.2.2 Subshifts 17

3.3 Morphisms 18
3.3.1 Morphisms and factors 18
3.3.2 Isomorphisms and conjugacy 19
3.3.3 Conjugacy invariants 20
3.3.4 Automorphism groups 21

3.4 Classes of subshifts 21
3.4.1 Definitions 21
3.4.2 Relating classes of subshifts 23
3.4.3 Computational considerations 24

3.5 Dynamics 24
3.5.1 Minimality 25
3.5.2 Transitivity and mixingness 25

4 Computability 27
4.1 Basic definitions 27

4.1.1 Computation model 27
4.1.2 Computable functions, computable sets 28
4.1.3 Decision problems 28
4.1.4 Computably enumerable sets 29

4.2 Arithmetical hierarchy 29
4.2.1 Arithmetical hierarchy of sets 29
4.2.2 Arithmetical hierarchy of real numbers 31

4.3 The RAMmodel 33
4.3.1 Random Access Machines 34
4.3.2 Non-determinism, computability and time complexity 35
4.3.3 log-Random Access Machines 35
4.3.4 Enumerations and basic transformations 36
4.3.5 Simulation by Turing machines 38

Draft: June 5, 2025 at 14:45. ix

5 Tools 39
5.1 Toeplitz subshifts 39

5.1.1 The ruler sequence 39
5.1.2 Toeplitzification 39
5.1.3 Toeplitzification 41

CONTEXT: SOFICITY OF SUBSHIFTS 43
Introduction 45

6 Soficity of ℤ subshifts 47
6.1 Syntactic monoid in formal languages 47
6.2 Definitions 48
6.3 Extender sets and soficity of ℤ subshifts 49

6.3.1 Characterization of soficity in terms of extender sets 49
6.3.2 Examples 50
6.3.3 Final word 50

7 Soficity of multidimensional subshifts 51
7.1 A rich class of subshifts 51
7.2 Proving soficity 52
7.3 Disproving soficity 53

7.3.1 Packing too much information and the counting argument 54
7.3.2 Limits on ressources 56
7.3.3 Final word 56

MULTIDIMENSIONAL EXTENDER SETS 57
Summary 59

8 Extender sets of multidimensional subshifts 61
8.1 Extender sets 61
8.2 Extender sets in example subshifts 62
8.3 Properties of extender sets 63

8.3.1 Subshifts of finite type 63
8.3.2 Aperiodicity 64
8.3.3 Iterated replacements 64
8.3.4 Minimality 65

8.4 Extender entropy 65
8.5 Examples 67
8.6 Properties of extender entropies 68

8.6.1 Dynamical properties 68
8.6.2 Computational complexity 69

9 Characterizations of extender entropies 71
9.1 Subshifts of finite type 71
9.2 Effective subshifts 71

9.2.1 Encoding integers in configurations 72
9.2.2 Auxiliary subshift 𝑍′

𝛼 72
9.2.3 Free bits and the subshift 𝑍𝛼 74

9.3 Sofic subshifts 75
9.3.1 The subshift 𝑌 𝑓

𝛼 : lifting the previous construction 76
9.3.2 Marking bits and positions in configurations 77
9.3.3 The subshift 𝑌𝛼 77

9.4 Computable subshifts 80
9.5 Minimal subshifts 80

Draft: June 5, 2025 at 14:45.

9.6 Mixing subshifts 81

SOFICITY AND SMALL REPRESENTATIONS 87
Summary 89

10 Soficity and inductive representations 91
10.1 Recursive representations 91

10.1.1 Representations 91
10.1.2 Inductions 92
10.1.3 Representations and inductive validity 92

10.2 Examples 94
10.3 Necessary and sufficient conditions for soficity 96

10.3.1 Recursive representations of sofic subshifts 96
10.3.2 Soficity of subshifts with small inductive representations 96

11 Mesh-Connected MultiComputers 99
11.1 Mesh-Connected MultiComputers and algorithms 99

11.1.1 Mesh-Connected MultiComputers 99
11.1.2 Sorting in MCMCs 100

11.2 Simulating RAM programs with MCMCs 101
11.3 Space-time diagrams of MCMCs 103

12 The expanding simulation framework 105
12.1 Tilesets 105
12.2 Simulation 106
12.3 Overview of the construction 106
12.4 Building expanding simulating tilesets 108

12.4.1 Macro-tiles 108
12.4.2 Macro-colors 109
12.4.3 Computation layer 109
12.4.4 Wiring the macro-colors to the computation layer 110
12.4.5 Recursion theorem 111

13 Proof of Theorem 10.11 115
13.1 Overview of the construction 115
13.2 Distributed computations and subarray computation layers 117

13.2.1 Subarrays of MCMC computations 117
13.2.2 Wiring subarrays of adjacent macro-tiles 117

13.3 Implementation of inductive representations in macro-tiles 118
13.3.1 Adding representations to the input arrays 118
13.3.2 Addressing scheme 119
13.3.3 Computing successive induction steps 119
13.3.4 Inductive validity of the representations 121

13.4 Final considerations and fixpoint theorem 122
13.5 Resulting tileset 125

14 Applications of Theorem 10.11 127
14.1 Right-computable densities 127
14.2 Seas of squares 129

14.2.1 Classical “seas of squares” construction 129
14.2.2 Improved “seas of squares” 130

14.3 Lifts 131
14.3.1 Periodic lifts 131
14.3.2 Sparse lifts 134

Draft: June 5, 2025 at 14:45.

15 Perspectives: soficity and communication complexity 137
15.1 Communication complexity 137

15.1.1 Definitions 137
15.1.2 Examples 138
15.1.3 Direct sums 138

15.2 Communication complexity in ℤ subshifts 139
15.3 Communication complexity of multidimensional subshifts 140
15.4 Example: the problem N1 141

15.4.1 The problem N1 141
15.4.2 Sample spaces and Linear Feedback Shift Registers (LFSRs) 142
15.4.3 A construction for ∧𝑛

𝑖=1N1𝑛 143
15.5 N1 as picture languages 144

15.5.1 Picture languages 144
15.5.2 Implementing N1 as a picture language 145
15.5.3 Perspectives 148

15.6 N1 as subshifts 149
15.6.1 The subshift𝑋N1 149
15.6.2 Free lift and soficity 149
15.6.3 Perspectives 149

BIBLIOGRAPHY 153
Personal bibliography 155

General bibliography 156

Draft: June 5, 2025 at 14:45.

1Who else than an mathematician would
delight in having an infinite decorated
bathroom wall or a “cut and project” tiled
wooden floor?

[Ber64] Berger, “The undecidability of
the Domino problem”.

[Wei73] Weiss, “Subshifts of finite type
and sofic systems”.

2 Even though the construction lines for
this one are a bit tricky [Wes17].

Introduction 1
Let us imagine for a second that a professional tiler has infinitely many

copies from a finite collection of square tiles at their disposition; along with
an infinite amount of time to devote to their tiling profession, which they
actually are in dire need of as they specialize in decorating infinite bathroom
walls. To appeal to different artistic sensibilities, our tiler allows their clients
– who, for some reason, all happen to be mathematicians1 – to provide them
with sets of constraints on the patterns that can appear on their walls.

Some immediate questions arise from this fairly common renovation
work situation. For example, following the set of constraints provided by a
given client, will the tiler succeed in decorating the infinite wall (or has the
mathematician client been too greedy in their esthetic requirements by pro-
viding contradictory constraints that prevents an infinite tiling from being
valid?). This problem, officially known as the Domino problem, surprisingly
turned out to be impossible to solve [Ber64]: more precisely, there exists no
recipe for our tiler to follow that answers the question correctly for all sets
of possible constraints.

Since tiling infinite walls while following infinitely many constraints
involves a considerable amount of effort, our tiler began a few eons ago to
look for building tricks that would make their task easier. For example, they
tried to convince their clients to only provide “local” constraints: in order to
place a new tile on the wall, our tiler would no longer have to check infinitely
many constraints around this position, but only look at the immediately
adjacent tiles that have already been placed; unfortunately, they never found
the clientele for such restrictive tilings.
Undeterred, our tiler may have recently found a potential workaround by

studying the ancient scriptures of their craft [Wei73]: from now on, they
will only accept the so-called “sofic” aesthetic constraints. Indeed, such
constraints would allow the tiler to draw some construction lines on their
tiles and build the wall locally – and make their task ever so easier – and
then erase the construction lines as if they never were. This, for example,
would satisfy their cook client who wanted a single “egg yellow” tile on a
white background; or their number theoretist client, who wanted a spiral of
squares who side lengths follow, in order, the sequence of prime numbers

[Wes17] Westrick, “Seas of squares with
sizes from aΠ0

1 set”.

2.
In this thesis, we are interested in answering the main question that will,

likely, occupy both our professional tiler and their mathematician clients
in the near future: when can a client’s artistic choices be defined by sofic
constraints? In other words, when listing the constraints given by a client,
does there exists an equivalent sofic set of constraints that would define the
same tilings?

Draft: June 5, 2025 at 14:45. 1

2 1 Introduction

[Mor21] Morse, “Recurrent geodesics on
a surface of negative curvature”.
[MH38] Morse and Hedlund, “Symbolic
dynamics”.

[Wan61]Wang,“Proving theorems by pat-
tern recognition – II”.
[Ber64] Berger, “The undecidability of
the Domino problem”.
[Rob71] Robinson, “Undecidability and
nonperiodicity for tilings of the plane”.
[Har86] Harel, “Effective transforma-
tions on infinite trees, with applications
to high undecidability, dominoes, and fair-
ness”.
3 This is the so-called “swamp of unde-
cidability”: if everything is undecidable,
and that undecidability threatens to bog
the carefree and careless mathematician
down, what is there left to do?
[HM10] Hochman and Meyerovitch, “A
characterization of the entropies of multi-
dimensional shifts of finite type”.
[Mey11] Meyerovitch, “Growth-type in-
variants for ℤ𝑑 subshifts of finite type and
arithmetical classes of real numbers”.
[JV15] Jeandel and Vanier, “Characteri-
zations of periods of multi-dimensional
shifts”.
[Zin15] Zinoviadis, “Hierarchy and expan-
siveness in 2D subshifts of finite type”.
[PV23] Paviet Salomon and Vanier, “Re-
alizing finitely presented groups as projec-
tive fundamental groups of SFTs”.
[Hoc09] Hochman, “On the dynamics
and recursive properties of multidimen-
sional symbolic systems”.
[AS13] Aubrun and Sablik, “Simulation
of effective subshifts by two-dimensional
subshifts of finite type”.
[DRS12] Durand, Romashchenko, and
Shen, “Fixed-point tile sets and their ap-
plications”.
[Wes17] Westrick, “Seas of squares with
sizes from aΠ0

1 set”.
[Des21] Destombes, “Algorithmic com-
plexity and soficness of shifts in dimen-
sion two”.

(Multidimensional) symbolic dynamics

Unbeknownst to our tiler’s knowledge, these questions can be formalized in
the field of symbolic dynamics. Symbolic dynamics was originally introduced
as a way to discretize continuous dynamical systems by cutting the phase
space into finitely many subsets, assigning a symbol to each, and coding the
trajectories of points in the original space into bi-infinite sequences of these
symbols [Mor21; MH38].

𝑇−2(𝑥)𝑇−1(𝑥)
𝑥

𝑇 (𝑥)

𝑇 2(𝑥)

𝑇 3(𝑥)

𝑇 4(𝑥)

𝑥−2 𝑥−1 𝑥0 𝑥1 𝑥2 𝑥3 𝑥4

While the field retains its dynamical origin (study of orbits, conjugacy
invariants…), it was independently studied in a multidimensional setting
under the formalism of Wang tiles [Wan61]: this introduced information-
theoretic tools like combinatorics and computability in symbolic dynamics,
with a famous milestone in the undecidability proof of the Domino problem
[Ber64], to complete its traditional measure-theoretic and dynamical ones.
Nowadays, symbolic dynamics is the study of subshifts: given a finite al-

phabet of symbolsA, a subshift is a closed and shift-invariant subset of the
Cantor space Aℤ𝑑. It turns out that subshifts can also be defined combi-
natorially in terms of forbidden finite patterns, which allows to consider
several complexity classes of subshifts: local subshifts, defined by adjacency
constraints; subshifts of finite type (or SFTs), defined by finitely many
forbidden patterns; effective subshifts, defined by computably enumerable
families of forbidden patterns; and sofic subshifts which – as informally
defined by our hypothetical infinite-time bathroom tiler – are projections of
local subshifts and subshifts of finite type.

In this thesis, we are particularly interested in multidimensional subshifts,
i.e. subshifts whose configurations color the discrete space ℤ𝑑 for arbitrary
dimensions 𝑑 ∈ ℕ. If the first undecidability results on multidimensional
subshifts from [Ber64; Rob71,…], which have since then extended to a large
variety of other decision problems [e.g.Har86], were largely considered as
an obstacle to the study ofmultidimensional subshifts3,many recent findings
strongly suggest a revision of this rather pessimistic statement.
Indeed, computability theory has provided a rich forest of theorems, lem-

mas, ideas and constructions about the computational expressiveness of mul-
tidimensional symbolic dynamics: numerous dynamical invariants and prop-
erties of subshifts have actually been characterized computationally – such
as entropies and entropy-like information-measuring quantities [HM10;
Mey11, …], sets of periods [JV15], directions of non-expansivity [Zin15], al-
gebraic invariants [PV23]…–, while [Hoc09; AS13; DRS12;Wes17; Des21]
embed arbitrary Turing machine computations into subshifts in order to
directly control the geometrical structure of their configurations.
Thus, the convergence of computability theory and multidimensional

symbolic dynamics has brought forward many fruitful interactions, and this
thesis follows directly in these steps as it looks at the soficity of multidimen-
sional subshifts.
Draft: June 5, 2025 at 14:45.

3

4 Among the numerous equivalent defini-
tions of regular languages, they are the
letter-by-letter projections of local lan-
guages of finite words…

[Moz89] Mozes, “Tilings, substitution
systems and dynamical systems generated
by them”.
[Cas10] Cassaigne,Odd shift.

Multidimensional soficity and subshifts

In this thesis, we present our work on the separation between the aforemen-
tioned classes of complexity on subshifts, in particular relating to the class of
sofic subshifts. Since sofic subshifts are actually effective, our main question
could be expressed as follows: when does an effective subshift turn out to
be sofic?
As is often the case with subshifts, very different pictures emerge between

the one-dimensional and the multidimensional cases. Since sofic subshifts
are symbol-by-symbol projections of local subshifts, they can be consid-
ered as an infinite and multidimensional variation of the classical “regular”
languages of finite words4:

• On ℤ, the separation between sofic and effective subshifts is entirely
solved: indeed, sofic subshifts being analogous to regular languages
implies that they are easily characterized by their “extender sets” (see
Chapter 6);

• However, the expressive power of sofic subshifts on ℤ𝑑 for 𝑑 ≥ 2
is harder to grasp: for example, many “complex” multidimensional
effective subshifts have surprisingly turned out to be sofic, including
[Moz89; Cas10; Wes17, …].

As a consequence, the exact separation between the classes of sofic and
effective multidimensional subshifts has never been characterized, though
many proofs of soficity and many sufficient conditions for non-soficity have
been described over the years (see Chapter 7).

While answering this problem will probably require many more efforts,
this thesis contains our progress on this separation question. In particular,
we consider the expressive power of sofic multidimensional subshifts in two
distinct contexts:

• Many proofs of non-soficity rely on quantifying how many patterns
of the same size can be freely exchanged within a subshift. Using the
formalization of “extender sets” (a point of view that, in fact, char-
acterizes soficity on ℤ), we look at the (asymptotic growth of) the
number of extender sets of sofic and effective subshifts from a compu-
tational point of view, and aim at comparing the expressive power of
sofic and effective multidimensional subshifts via their extender sets.

• While various conditions of non-soficity appear within the litterature,
proving the soficity of a multidimensional subshift is often done on
a case-by-case basis. Looking for more generic tools, we prove a suf-
ficient condition for soficity in the multidimensional setting on the
amount of “useful information” contained in the patterns. In addition
to being a rather general condition of soficity, this condition enriches
the known expressive power of multidimensional sofic subshifts by
proving the newfound soficity of some effective sofic subshifts.

Draft: June 5, 2025 at 14:45.

4 1 Introduction

[RS59] Rabin and Scott, “Finite automata
and their decision problems”.
[KM13] Kass and Madden, “A sufficient
condition for non-soficness of higher-
dimensional subshifts”.
[OP16] Ormes and Pavlov, “Extender sets
and multidimensional subshifts”.
[FP19] French and Pavlov, “Follower, pre-
decessor, and extender entropies”.

[HM10] Hochman and Meyerovitch, “A
characterization of the entropies of multi-
dimensional shifts of finite type”.
[Mey11] Meyerovitch, “Growth-type in-
variants for ℤ𝑑 subshifts of finite type and
arithmetical classes of real numbers”.
[CV21] Callard and Vanier, “Compu-
tational characterization of surface en-
tropies for ℤ2 subshifts of finite type”.
[GS23] Gayral and Sablik, “Arithmetical
hierarchy of the Besicovitch-stability of
noisy tilings”.

[CPV25] Callard, Paviet Salomon, and
Vanier, “Computability of extender sets
in multidimensional subshifts”.
[Des21] Destombes, “Algorithmic com-
plexity and soficness of shifts in dimen-
sion two”.
[DRS12] Durand, Romashchenko, and
Shen, “Fixed-point tile sets and their ap-
plications”.
[DRS10] Durand, Romashchenko, and
Shen, “Effective closed subshifts in 1D can
be implemented in 2D”.
[Wes17] Westrick, “Seas of squares with
sizes from aΠ0

1 set”.

Structure of the thesis and contributions

The first part of this thesis, “Gentle definitions”, serves as a presentation
of the many concepts that we use throughout this thesis, from symbolic
dynamics (subshifts and classes of subshifts) and computability (computable
functions and theRAMcomputationalmodel). Sincemost results from these
sections are folklore, the advanced reader can probably skip them safely.
The second part, “Context: soficity of subshifts”, contains the real intro-

duction of this document. Once proper definitions have been established, we
establish this thesis’ goal to study the soficity of multidimensional subshifts
and present an overview of what is already known about it.

This thesis’ contributions appear in the last two parts of this document, respec-
tively titled “Multidimensional extender sets” and “Soficity and small represen-
tations”. More precise motivations and a list of contributions are available
at the beginning of each part, which are briefly summarized below.

▶ Part: “Multidimensional extender sets”

This part studies the generalization of the classical notion of extender sets
from formal language theory [RS59] to the multidimensional setting ℤ𝑑

[KM13; OP16]. Intuitively, extender sets define an equivalence between
two patterns if any occurence of one can be replaced by the other in all the
configurations of a given subshift.
In particular, we focus on a conjugacy invariant called extender entropy,

which measures the exponential growth rate of the number of extender
sets, and was originally introduced in [FP19] on ℤ subshifts. Instead of
quantifying the direct number of patterns as with topological entropies,
extender entropies quantify the number of equivalence classes of patterns
for the exchange relation of the previous paragraph.

Inspired by other studies of entropy-like measures on subshifts [HM10;
Mey11; CV21; GS23, …], we characterize the whole set of possible extender
entropies achieved by well-known classes of subshifts, especially effective
and sofic subshifts, using the arithmetical hierarchy of real numbers. Our
main contributions include:

Theorem 9.2. For 𝑑 ≥ 1, the set of extender entropies of ℤ𝑑 effective subshifts
is exactly [0,+∞) ∩ Π3.

Theorem 9.13. For 𝑑 ≥ 2, the set of extender entropies of ℤ𝑑 sofic subshifts is
exactly [0,+∞) ∩ Π3.

In particular, these results show that sofic subshifts are as expressive as
their effective counterparts when it comes down to the sets of possible exten-
der entropies they can achieve, even under mixing dynamical restrictions;
and that counting the number of extender sets cannot separate sofic from
effective subshifts. These results were published in [CPV25].

▶ Part: “Soficity and small representations”

This part continues work initiated in [Des21] by considering sufficient
conditions of multidimensional soficity based on the so-called “fixpoint
construction” of tilings [DRS12], which has already been used to prove the
soficity of some computationally complex subshifts [DRS10;Wes17; Des21].
Our main contribution is a set of abstract sufficient conditions for multi-

dimensional soficity based on a quantification of the “useful information”
contained in the patterns of a given subshift. More precisely, we introduce

Draft: June 5, 2025 at 14:45.

5

5 i.e. with a sublinear amount of informa-
tion relatively to the size of the border.
6 Intuitively, the computations should fit
within the domain ⟦𝑛⟧𝑑.

the notion of inductive representations, which provide a succint way to encode
said “useful information” from the patterns of a given subshift. Intuitively,
these representations should be understood as a way to summarize the in-
formation contained in square patterns, computed inductively from their
pixels to the full domain, in order to decide whether the concatenation of
2 × 2 patterns (on ℤ2, and 2𝑑 patterns on ℤ𝑑) forms a locally valid pattern.
It is often intuited that, in a sofic subshift, communications between

𝑑-dimensional patterns of domain ⟦𝑛⟧𝑑 and their configurations must go
through the border 𝜕(⟦𝑛⟧𝑑), and are thus limited to 𝑂(𝑛𝑑−1) bits of infor-
mation. Our main contribution can be understood as a partial converse
statement:

Theorem 10.11. Fix 𝑑 ∈ ℕ and a finite alphabetA. LetR ∶ A∗𝑑 ⇉ {0, 1}∗ be
a representation function and I ⊆ ({0, 1}∗)2𝑑 × {0, 1}∗ be an induction for R
such that:

(i) There exists 𝛼 ∈ ℝ+ with 𝛼 < 𝑑 − 1 such that, for any 𝑤 ∈ A⟦𝑛⟧𝑑 and
every representation 𝑟 ∈ R(𝑤), the size of 𝑟 verifies |𝑟| = 𝑂(𝑛𝛼);

(ii) There exists 𝛽 ∈ ℝ+ with 𝛼 ⋅ 𝛽 < 𝑑 − 1 such that I is computable in time
𝑡(𝑠) ≤ 𝑂(𝑠𝛽) in the log-RAM model;

Then

𝑋R,I = {𝑥 ∈ Aℤ𝑑 ∶ ∀𝑤 ⊑ 𝑥, ∃𝑛 ∈ ℕ, ∃𝑤′ ∈ A⟦2𝑛⟧𝑑 ,
𝑤 ⊑ 𝑤′ ⊑ 𝑥 and 𝑤′ is inductively valid}

is a sofic subshift.

Intuitively, this theorem proves that subshifts in which the validity of
patterns of domain ⟦𝑛⟧𝑑 can be verified with only 𝑂(𝑛𝛼) bits of information
about the pattern (for 𝛼 < 𝑑 − 1)5 are actually sofic (assuming some time
restrictions on the computations, namely that computations happen in time
𝑡(𝑠) = 𝑂(𝑠𝛽) for 𝛽 such that6 𝛼 ⋅ 𝛽 < 𝑑 − 1).
The proof of Theorem 10.11mostly consists in building upon the “fixpoint

contruction” from [DRS12]. However, due to the very tight time and space
constraints of our problems, the computations are implemented within
macro-tiles as space-time diagrams of a highly parallel computational model:
mesh-connected multicomputers.

Draft: June 5, 2025 at 14:45.

GENTLE DEFINITIONS

Draft: June 5, 2025 at 14:45. 7

7 The upper bound is not included, so that
⟦𝑛⟧ has cardinality 𝑛.

8Which follows the French conventions.
While the author is very intimidated by
foreign readers whose “non-decreasing”
functions are not the functions that do not
decrease, he is considerably more afraid
of his former teachers – who are far closer
and far more terrifying.

Notations and conventions 2
Before the thesis begins, we settle on a few conventions regarding

traditional notations of mathematics (sets of integers, cardinality,
vectors, finitewords…) and prove the generalization of thewell-known
“subadditive lemma” to a multivariate context.

2.1 General mathematics

Integers As the author is a computer scientist, we start counters at 0 and
denote by ℕ = {0, 1,… } the set of natural integers. For any two integers
𝑎, 𝑏 ∈ ℕ, we denote [𝑎 .. 𝑏] = {𝑎, 𝑎 + 1,… , 𝑏} ⊆ ℕ the interval of integers
ranging between 𝑎 and 𝑏 (bounds included).
Additionally, we denote ⟦𝑛⟧ ⊆ ℕ the interval of integers {0,… , 𝑛 − 1}.7

Extending this notation from intervals of ℕ to hyperrectangles of ℕ𝑑, we
denote ⟦𝑛1,… , 𝑛𝑑⟧ = {(𝑖1,… , 𝑖𝑑) ∈ ℕ𝑑 ∶ 0 ≤ 𝑖𝑗 < 𝑛𝑗 for every 𝑗}.

Orderings and terminology All notions related to orderings are assumed
to be inclusive by default8. In other words, if (𝑂,≤) is an ordered set, then
𝑜1 ∈ 𝑂 is smaller (resp. larger) than 𝑜2 ∈ 𝑂 if 𝑜1 ≤ 𝑜2 (resp. 𝑜1 ≥ 𝑜2). If the
inequalities are strict, then 𝑜1 will be strictly smaller (resp. larger) than 𝑜2.
These considerations also apply to positive and negative real numbers.
Similarly, if two sets𝑂,𝑂′ are ordered and 𝑓∶ 𝑂 → 𝑂′ is a function, 𝑓 is said

to be increasing (resp. decreasing) if 𝑜1 ≤ 𝑜2 implies that 𝑓(𝑜1) ≤ 𝑓(𝑜2) (resp.
𝑓(𝑜1) ≥ 𝑓(𝑜2)); and strictly increasing (resp. decreasing) if the inequalities
are strict.

Sets For a finite set 𝑆, we denote by |𝑆| the cardinal of 𝑆, i.e. its number
of elements. Similarly, if 𝑆 ⊆ 𝑋 is a subset, we denote by 𝑆𝑐 = 𝑋 ∖ 𝑆 its
complement. The union of two sets 𝑆1, 𝑆2 is denoted 𝑆1 ∪ 𝑆2; and 𝑆1 ⊔𝑆2 if
this union is disjoint.

Multidimensional geometry Working with 𝑑-dimensional objects, we
will often consider tuples i = (𝑖1,… , 𝑖𝑑) ∈ ℤ𝑑 as either vectors, positions…
typeset in bold letters.
For 𝑘 ∈ ℕ and a set of positions 𝐹 ⊆ ℤ𝑑, we denote by 𝜕𝑘(𝐹) the 𝑘-border

of 𝐹, i.e. the set of all elements of 𝐹 at distance less than 𝑘 from ℤ𝑑 ∖ 𝐹 (for
the 𝐿1 or “Manhattan” distance). Similarly, we denote I𝑘(𝐹) = 𝐹 ∖ 𝜕𝑘(𝐹)
the 𝑘-interior of 𝐹, i.e. the set of all elements of 𝐹 at distance strictly more
than 𝑘 from ℤ𝑑 ∖ 𝐹.

Words and patterns For a finite setA, called an alphabet, we denote by
A∗ = ⋃𝑛∈ℕ A

𝑛 the set of all finite words over the alphabetA. For two words
𝑢, 𝑣 ∈ A∗, we denote by 𝑢𝑣 (or 𝑢 ⋅ 𝑣) the concatenation of 𝑢 and 𝑣; �̄� will
denote the mirror of the word 𝑢.
In Definition 3.1, we denote patterns as colorings of arbitrary domains

𝐷 ⊆ ℤ𝑑 by symbols of the alphabetA. A pattern is said to be finite when its

Draft: June 5, 2025 at 14:45. 9

10 2 Notations and conventions

9 The two symbols are distinct but volun-
tarily close, since no confusion should be
possible in a given context.

10We denote by≤ both the classical order-
ing on ℕ and its extension to ℕ𝑑.

11 The subadditive lemma states that for
every subadditive function 𝑓 ∶ ℕ → ℝ such
that 𝑓(𝑚 + 𝑛) ≤ 𝑓(𝑚) + 𝑓(𝑛), the limit
lim

𝑛→+∞
𝑓(𝑛)
𝑛 exists and equals inf𝑛∈ℕ

𝑓(𝑛)
𝑛 .

[Cap08] Capobianco, “Multidimensional
cellular automata and generalization of
Fekete’s lemma”.
12 I include the statement and its proof
here for the sake of exhaustiveness, and
because I had somehow managed to never
hear about them.

domain is finite. Generalizing the previous notation, we denote byA∗𝑑 the
set of all 𝑑-dimensional finite patterns, andA⊛𝑑 the set of all (potentially
infinite) 𝑑-dimensional patterns9.
Given 𝑤,𝑤′ ∈ A⊛𝑑 two patterns and 𝐹 ⊆ dom(𝑤), we denote by 𝑤 ⋉𝐹 𝑤′

the patterns whose symbols are 𝑤i for i ∈ 𝐹, and 𝑤′
i otherwise.

Asymptotics We use classical notations for asymptotic comparison of
functions: given two functions 𝑓, 𝑔 ∶ ℝ+ → ℝ∗

+, we say that:

(i) 𝑓(𝑥) = 𝑜(𝑔(𝑥)) if 𝑓(𝑥)
𝑔(𝑥) −−−−→𝑥→+∞

0;
(ii) 𝑓(𝑥) = 𝑂(𝑔(𝑥)) if there exists𝐾 ∈ ℝ+ such that |𝑓(𝑥)| ≤ 𝐾 ⋅ |𝑔(𝑥)|;
(iii) 𝑓(𝑥) = Θ(𝑔(𝑥)) if 𝑓(𝑥) = 𝑂(𝑔(𝑥)) and 𝑔(𝑥) = 𝑂(𝑓(𝑥));
(iv) 𝑓(𝑥) = �̃�(𝑔(𝑥)) if 𝑓(𝑥) = 𝑂(𝑔(𝑥) ⋅ log(𝑔(𝑥))).

2.2 Multivariate analysis

We take a quite detour through the world of multivariate analysis to settle
on a definition for multivariate limits, which we will later use to define
multidimensional entropies of subshifts.
Considering the usual ordering of ℕ, let us consider the (partial) product

ordering ≤ on ℕ𝑑 defined as10: (𝑛1,… , 𝑛𝑑) ≤ (𝑚1,… ,𝑚𝑑) if 𝑛𝑖 ≤ 𝑚𝑖 for
every 1 ≤ 𝑖 ≤ 𝑑. The classical notion of limit from real analysis can be
generalized to a multivariate setting as follows:

Definition 2.1. A function 𝑓∶ ℕ𝑑 → ℝ admits a limit 𝑙 ∈ ℝ if:

∀𝜀 > 0, ∃N ∈ ℕ𝑑, ∀n ∈ ℕ𝑑, n ≥ N ⟹ |𝑓(n) − 𝑙| ≤ 𝜀;

in other words, if 𝑙 is the limit of 𝑓(𝑛1,… , 𝑛𝑑) when the variables 𝑛1,… , 𝑛𝑑 all
grow to +∞· We denote this by lim

𝑛1,…,𝑛𝑑∈ℕ𝑑
𝑓(𝑛1,… , 𝑛𝑑) = 𝑙.

Other classical notions from real analysis (tending to infinity, limit inferior
and superior…) generalize similarly with the ordering ≤ on ℕ𝑑.

In this manuscript, we will in particular need a multivariate version of
the subadditive lemma11. On multivariate functions:

Definition 2.2. A multivariate function 𝑓 ∶ ℕ𝑑 → ℝ is subadditive if it is
subadditive in every variable. In other words, if for every 𝑛1,… , 𝑛𝑑 ∈ ℕ, every
1 ≤ 𝑖 ≤ 𝑑 and every𝑚𝑖 ∈ ℕ, we have:

𝑓(𝑛1,… , 𝑛𝑖 +𝑚𝑖,… , 𝑛𝑑) ≤ 𝑓(𝑛1,… , 𝑛𝑖,… , 𝑛𝑑) + 𝑓(𝑛1,… ,𝑚𝑖,… , 𝑛𝑑).

Amultivariate version of the subadditive lemma was proved in [Cap08]12:

Lemma 2.3 ([Cap08, Theorem 1]). Let 𝑓 ∶ ℕ𝑑 → ℝ be a subadditive multi-
variate function. Then the limit of 𝑓(𝑛1,…,𝑛𝑑)

𝑛1⋯𝑛𝑑
exists and:

lim
𝑛1,…,𝑛𝑑∈ℕ𝑑

𝑓(𝑛1,… , 𝑛𝑑)
𝑛1 ⋯𝑛𝑑

= inf
𝑛1,…,𝑛𝑑∈ℕ𝑑

𝑓(𝑛1,… , 𝑛𝑑)
𝑛1 ⋯𝑛𝑑

.

The proof is very similar to the one-dimensional case:

Proof. We follow the proof of [Cap08] and prove that:

lim sup
𝑛1,…,𝑛𝑑∈ℕ𝑑

𝑓(𝑛1,… , 𝑛𝑑)
𝑛1 ⋯𝑛𝑑

≤ inf
𝑛1,…,𝑛𝑑∈ℕ𝑑

𝑓(𝑛1,… , 𝑛𝑑)
𝑛1 ⋯𝑛𝑑

,

where lim supn∈ℕ𝑑 𝑔(n) = infn∈ℕ𝑑 supm≥n 𝑔(m).

Draft: June 5, 2025 at 14:45.

2.2 Multivariate analysis 11

Fix 𝑘1,… , 𝑘𝑑 ∈ ℕ. For 𝑛1,… , 𝑛𝑑 ∈ ℕ𝑑, by the division theorem there exists
𝑞1,… , 𝑞𝑑 ∈ ℕ𝑑 and 𝑟1,… , 𝑟𝑑 ∈ ℕ𝑑 (with 𝑟𝑖 < 𝑘𝑖) such that 𝑛𝑖 = 𝑘𝑖 ⋅ 𝑞𝑖 + 𝑟𝑖.
Using the subadditivity of 𝑓 on 𝑛1, we obtain:

𝑓(𝑛1,… , 𝑛𝑑)
𝑛1 ⋯𝑛𝑑

= 𝑓(𝑘1 ⋅ 𝑞1 + 𝑟1, 𝑛2,… , 𝑛𝑑)
𝑛1 ⋯𝑛𝑑

≤ (By subadditivity on 𝑛1)
𝑞1 ⋅ 𝑓(𝑘1, 𝑛2,… , 𝑛𝑑)

𝑛1 ⋯𝑛𝑑
+ 𝑓(𝑟1, 𝑛2,… , 𝑛𝑑)

𝑛1 ⋯𝑛𝑑

≤ (By subadditivity on 𝑛2,… ,𝑛𝑑)
𝑞1 ⋅ 𝑓(𝑘1, 𝑛2,… , 𝑛𝑑)

𝑛1 ⋯𝑛𝑑
+ 𝑛2 ⋯𝑛𝑑 ⋅ 𝑓(𝑟1, 1,… , 1)

𝑛1 ⋯𝑛𝑑

Thus, by iterating subadditivity on each variable of 𝑓, we obtain:

𝑓(𝑛1,… , 𝑛𝑑)
𝑛1 ⋯𝑛𝑑

≤ 𝑞1 ⋯𝑞𝑑 ⋅ 𝑓(𝑘1,… , 𝑘𝑑)
𝑛1 ⋯𝑛𝑑

+
𝑑

∑
𝑖=1

𝑞1 ⋯𝑞𝑖−1 ⋅ 𝑛𝑖+1 ⋯𝑛𝑑 ⋅ 𝑓(𝑟1,… , 𝑟𝑖, 1,… , 1)
𝑛1 ⋯𝑛𝑑

≤ 𝑞1 ⋯𝑞𝑑 ⋅ 𝑓(𝑘1,… , 𝑘𝑑)
𝑛1 ⋯𝑛𝑑

+
𝑑

∑
𝑖=1

𝑓(𝑟1,… , 𝑟𝑖, 1,… , 1)
𝑛𝑖

Since 𝑛𝑖 = 𝑘𝑖 ⋅ 𝑞𝑖 + 𝑟𝑖, we have
𝑞𝑖
𝑛𝑖

≤ 1
𝑘𝑖
. Moreover, since all the terms

𝑓(𝑟1,… , 𝑟𝑖, 1,… , 1) are bounded, we obtain that for any 𝜀 > 0, the previous
inequalities become

𝑓(𝑛1,… , 𝑛𝑑)
𝑛1 ⋯𝑛𝑑

≤ 𝑓(𝑘1,… , 𝑘𝑑)
𝑘1 ⋯𝑘𝑑

+ 𝜀.

when all the 𝑛𝑖 are large enough. In particular, for any 𝑘1,… , 𝑘𝑑 ∈ ℕ𝑑, we
have:

lim sup
𝑛1,…,𝑛𝑑∈ℕ𝑑

𝑓(𝑛1,… , 𝑛𝑑)
𝑛1 ⋯𝑛𝑑

≤ 𝑓(𝑘1,… , 𝑘𝑑)
𝑘1 ⋯𝑘𝑑

.

By taking the infimum over 𝑘1,… , 𝑘𝑑 ∈ ℕ𝑑, we conclude that:

lim sup
𝑛1,…,𝑛𝑑∈ℕ𝑑

𝑓(𝑛1,… , 𝑛𝑑)
𝑛1 ⋯𝑛𝑑

≤ inf
𝑛1,…,𝑛𝑑∈ℕ𝑑

𝑓(𝑛1,… , 𝑛𝑑)
𝑛1 ⋯𝑛𝑑

.

On the other hand, we have:

inf
𝑛1,…,𝑛𝑑∈ℕ𝑑

𝑓(𝑛1,… , 𝑛𝑑)
𝑛1 ⋯𝑛𝑑

≤ lim inf
𝑛1,…,𝑛𝑑∈ℕ𝑑

𝑓(𝑛1,… , 𝑛𝑑)
𝑛1 ⋯𝑛𝑑

.

We conclude by equality of limit inferior and limit superior.

Draft: June 5, 2025 at 14:45.

Figure 3.1: A 2-dimensional pattern on
the alphabetA = { , }.

⊑

Figure 3.2: Pattern inclusion.
13 By definition, pattern inclusion does
not require the exact inclusion of domains,
i.e. is a notion of inclusion “up to transla-
tion”.

Symbolic dynamics 3
This chapter contains a brief glance into thewonders ofmultidimen-

sional symbolic dynamics. It introduces subshifts as combinatorial
objects, but also as topological dynamical systems. Morphisms/factor
maps (i.e cellular automata) define factors and conjugacy between
subshifts. Classical dynamical properties of subshifts are introduced
(minimality, mixingness…). Finally, we consider the usual computa-
tional classes of subshifts: local subshifts and subshifts of finite type,
sofic subshifts and effective subshifts…

3.1 Subshifts

3.1.1 Patterns and configurations

An alphabet is a finite set of symbols A, whose elements are often called
symbols or colors. For 𝑑 ∈ ℕ a dimension, we define 𝑑-dimensional patterns
as:

Definition 3.1 (Pattern). A (𝑑-dimensional) pattern is a mapping𝑤∶ 𝐷 → A,
i.e. a coloring of𝐷 with the symbols ofA, where𝐷 is a subset𝐷 ⊆ ℤ𝑑 called the
domain of 𝑤, denoted dom(𝑤). Given i ∈ dom(𝑤), we denote by 𝑤i ∈ A the
symbol taken by 𝑤 at position i.
A pattern 𝑤 is finite if dom(𝑤) is a finite subset of ℤ𝑑. We denote by A∗𝑑

the set of 𝑑-dimensional finite patterns over the alphabetA, andA⊛𝑑 the set of
𝑑-dimensional (possibly infinite) patterns of the alphabetA.

As is usual in symbolic dynamics, we prefer the subscript notation 𝑤i
instead of the traditional functional notation 𝑤(i) to denote the color of the
pattern 𝑤 at position i.
It is often convenient to consider patterns “only up to translation”. Indeed,

if there exists two patterns 𝑢, 𝑣 ∈ A⊛𝑑 and some translation i ∈ ℤ𝑑 ∖ {0}
such that 𝑢 = 𝑣|i+dom(𝑣), then 𝑢 and 𝑣 are distinct patterns formally but
are often considered to represent the same drawing. In this thesis, we will
avoid working with equivalence classes of patterns explicitely, but will try to
explicitely mention it when the distinction matters.
We say that a pattern 𝑢 appears in a pattern 𝑣, denoted 𝑢 ⊑ 𝑣 (or, conversely,

that 𝑣 contains the pattern 𝑢), if there exists a position i ∈ ℤ𝑑 such that
dom(𝑢) ⊆ (i+ dom(𝑣)) and:

∀i ∈ dom(𝑢), 𝑢j = 𝑣i+i.13

Conversely, a pattern 𝑢 avoids a pattern 𝑣 if, for every position i ∈ ℤ𝑑 such
that dom(𝑢) ⊆ (i+ dom(𝑣)), there exists j ∈ dom(𝑢) such that 𝑢j ≠ 𝑣i+j.

Definition 3.2 (Configuration). A (𝑑-dimensional) configuration is a map-
ping 𝑥∶ ℤ𝑑 → A, i.e. a pattern whose domain is the entire space dom(𝑥) = ℤ𝑑.
Infinite patterns may sometimes be called partial configuration. The set of all
𝑑-dimensional configurations overA is denotedAℤ𝑑 .

Draft: June 5, 2025 at 14:45. 13

14 3 Symbolic dynamics

𝜎(2,2)

Figure 3.3: A configuration and its (2, 2)-
shift.

3.1.2 Subshifts

Subshifts In this thesis,we are interested in shift spaces, or subshifts,which
are sets of configurations defined in terms of forbidden patterns:

Definition 3.3 (Subshift). In dimension 𝑑 ∈ ℕ and given an alphabet A, a
(possibly infinite) family of finite patterns defines the set of configurations that
avoid the patterns of F:

𝑋F = {𝑥 ∈ Aℤ𝑑 ∶ ∀𝑤 ∈ F, 𝑤 ⋢ 𝑥}.

A subshift is a set of configurations𝑋 ⊆ Aℤ𝑑 for which there exists a family of
finite “forbidden” patterns F such that𝑋 = 𝑋F.

The reader should notice that a subshift can be defined by several (in fact,
infinitely many) families of forbidden patterns.

Example 3.4. In dimension 𝑑 = 2, consider the two-color alphabetA = { , },
and the family of forbidden patterns

F = { , }.

Then𝑋F ⊆ Aℤ2 is the subshift whose configurations are composed of ascending
-colored stairs over a background, such as:

along, of course, the full and the full configurations:

.

Notice that translations act upon patternsA⊛𝑑 and configurationsAℤ𝑑 .
More precisely, we define the shift maps as:

Definition 3.5 (Shift maps). For a vector t ∈ ℤ𝑑, the t-shift map is the
translation function 𝜎t ∶ A⊛𝑑 → A⊛𝑑 defined as:

∀𝑤 ∈ A⊛𝑑, 𝜎t(𝑤) = (i ∈ (dom(𝑤) − t) ↦ 𝑤i+t).

On ℤ, we often denote the left-shift 𝜎 = 𝜎1.

The terminology shift spaces/subshifts comes from the invariance of these
objects by translations/shift maps: indeed, a configuration 𝑥 ∈ Aℤ𝑑 avoids
a pattern 𝑤 ∈ A∗𝑑 if and only if all its translations 𝜎t(𝑥) for t ∈ ℤ𝑑 avoid 𝑤
too.

Draft: June 5, 2025 at 14:45.

3.1 Subshifts 15

14 See Lemma 2.3 for the generalization
of the subadditive lemma to multivariate
functions, and Definition 2.1 for the defi-
nition of multivariate limit used below.

15 See Definition 3.27 for more details.

16 Although these projections are defined
on alphabets, we generalize to configura-
tions (and sets of configurations) by de-
noting 𝜋(𝑥) the configuration formally de-
fined as 𝜋(𝑥)i = 𝜋(𝑥i).

Languages The set of patterns that appear in a subshift, also called the
set of valid patterns of a subshift, defines a language:

Definition 3.6 (Language). Let𝑋 ⊆ Aℤ𝑑 be a subshift. For a domain𝐷 ⊆ ℤ𝑑,
the language of all valid patterns of𝑋 over the domain𝐷 is:

L𝐷(𝑋) = {𝑥|𝐷 ∶ 𝑥 ∈ 𝑋}.

The language of𝑋 is the set of all its valid patterns, i.e.

L(𝑋) = ⋃
𝐷⊆ℤ𝑑

L𝐷(𝑋).

It is sometimes useful to consider the language of finite valid patterns of
𝑋, which we will often denote L(𝑋) ∩A∗𝑑.
By counting the number of valid finite patterns appearing in a subshift,

one defines the notion of pattern complexity. More formally:

Definition 3.7 (Pattern complexity). Let𝑋 ⊆ Aℤ𝑑 be a subshift. The pattern
complexity of𝑋 is the function:

𝑁𝑋 ∶ 𝑛1,… , 𝑛𝑑 ∈ ℕ𝑑 ↦ |L⟦𝑛1,…,𝑛𝑑⟧(𝑋)|.

Since the complexity function 𝑁𝑋 ∶ ℕ𝑑 → ℕ is submultiplicative, it yields
a well-defined limit called the topological entropy by the classical subadditive
lemma14:

Definition 3.8 (Topological entropy). Let 𝑋 ⊆ Aℤ𝑑 be a subshift. The
(topological) entropy of𝑋, denoted ℎ(𝑋), is the value:

ℎ(𝑋) = lim
𝑛1,…,𝑛𝑑∈ℕ𝑑

log |L⟦𝑛1,…,𝑛𝑑⟧(𝑋)|
𝑛1 ⋯𝑛𝑑

.

Following the information-theoretic point of view, we informally view
the entropy of a subshift as a measure of the average amount of information
that is learned about a whole configuration by only seeing one of its cells.
Topological entropy is actually a classical notion in topological dynamics,
and is a conjugacy invariant15.

3.1.3 Operations on subshifts

Cartesian products, layers and projections

Cartesian products The (Cartesian) product of two subshifts is defined
as follows:

Definition 3.9 (Cartesian product). Given two alphabetsA and B, and two
𝑑-dimensional subshifts𝑋 ⊆ Aℤ𝑑 and 𝑌 ⊆ Bℤ𝑑 , the Cartesian product𝑋 × 𝑌
is the subshift:

𝑋 × 𝑌 = {𝑥 ∈ (A× B)ℤ𝑑 ∶ 𝜋A(𝑥) ∈ 𝑋 and 𝜋B(𝑥) ∈ 𝑌 },

where 𝜋A ∶ A× B → A and 𝜋B ∶ A× B → A denote the natural projections16.

Remark. When dealing with Cartesian products, we very often abuse notations
and identify (A×B)ℤ𝑑 withAℤ𝑑 ×Bℤ𝑑 . This should not be a source of confusion.

Superimposition Very often in subshifts, especially for proofs that involve
the construction of a subshift, we will consider the Cartesian product of
several subshifts as a superimposition of layers. More precisely,

Draft: June 5, 2025 at 14:45.

16 3 Symbolic dynamics

𝑥
𝑥
𝑥
𝑥
𝑥
𝑥
𝑥
𝑥
𝑥
𝑥

Figure 3.4: Periodic lift of a ℤ configura-
tion to ℤ2.

𝑥−3

𝑥−2

𝑥−1

𝑥0

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

Figure 3.5: Free lift configuration from ℤ
to ℤ2.

Definition3.10 (Layers). Given subshifts𝐿1 ⊆ Aℤ𝑑

1 ,…,𝐿𝑘 ⊆ Aℤ𝑑

𝑘 , a subshift
𝑋 is a superimposition of 𝐿1,… , 𝐿𝑘 if

𝑋 ⊆ 𝐿1 ×⋯× 𝐿𝑘

is a subshift of 𝐿1 ×⋯×𝐿𝑘 with (optionally) some additional forbidden patterns.
The subshifts 𝐿1,… , 𝐿𝑘 are called the layers of𝑋.

Given a subshift𝑋 ⊆ 𝐿1 ×⋯×𝐿𝑘 on 𝑘 layers, and for any subset of these
layers 𝐼 ⊆ [1 .. 𝑘], we denote by 𝜋∏𝑖∈𝐼 𝐿𝑖

∶ ∏𝑘
𝑖=1 𝐿𝑖 → ∏𝑖∈𝐼 𝐿𝑖 the natural

projection onto the layers of 𝐼.

Lifts

Given a 𝑑-dimensional subshift, we consider two constructions to obtain
related 𝑑′-dimensional subshifts for 𝑑′ ≥ 𝑑: the periodic lift, and the free
lift.

Definition 3.11 (Periodic lifts). Let𝑋 ⊆ Aℤ𝑑 be a subshift. For 𝑑′ ≥ 𝑑, the
𝑑′-periodic lift of𝑋 is the subshift𝑋⇑𝑑′ defined as:

𝑋⇑𝑑′ = {𝑥′ ∈ Aℤ𝑑′ ∶ ∃𝑥 ∈ 𝑋, ∀i ∈ ℤ𝑑′−𝑑, 𝑥′|{i}×ℤ𝑑 = 𝑥}.

For 𝑑′ = 𝑑 + 1, we often denote𝑋⇑𝑑+1 as𝑋⇑.

In other words, configurations of𝑋⇑ are obtained by repeating configura-
tions of𝑋 vertically. On the other hand, configurations in the free lift are
obtained by stacking independent configurations of𝑋:

Definition 3.12 (Free lifts). Let 𝑋 ⊆ Aℤ𝑑 be a subshift. For 𝑑′ ≥ 𝑑, the
𝑑′-free lift of𝑋 is the subshift𝑋⇌𝑑′ defined as:

𝑋⇌𝑑′ = {𝑥 ∈ Aℤ𝑑′ ∶ ∀i ∈ ℤ𝑑′−𝑑, 𝑥|{i}×ℤ𝑑 ∈ 𝑋}.

For 𝑑′ = 𝑑 + 1, we often denote𝑋⇌𝑑+1 as𝑋⇌.

Periodic lifts gained popularitywhen initialwork began onProposition 3.44,
while free lifts have mostly been considered in the context of sofic subshifts,
especially relating to Question 15.10.

3.2 Topology

Subshifts can also be introduced as topological dynamical systems. Many
properties of subshifts follow from the fact that they form compact spaces
(see Corollary 3.19).

Definition 3.13 (Full shift). In dimension 𝑑 ∈ ℕ and given an alphabet A,
the full-shift is the set of all possible configurationsAℤ𝑑 .

The full-shift is a subshift, since it can be defined by the the empty family
of forbidden patterns F = ∅. More interestingly, it can be equipped with the
product topology to define a topological space.

3.2.1 Product topology

Cylinders Cylinders define a basis of the product topology:

Definition 3.14 (Cylinder). In dimension 𝑑 ∈ ℕ and given an alphabetA, let
𝑤 ∈ A∗𝑑 be a finite pattern. It defines a cylinder ⟦𝑤⟧ as:

⟦𝑤⟧ = {𝑥 ∈ Aℤ𝑑 ∶ 𝑥|dom(𝑤) = 𝑤}.

In other words, the cylinder ⟦𝑤⟧ denotes the set of all configurations that
agree with 𝑤 on dom(𝑤).

Draft: June 5, 2025 at 14:45.

3.2 Topology 17

17 Open and closed set.

18 A product of compact spaces is compact.

19 For a pattern𝑤, {𝑥∶ 𝑤 ⊑ 𝑥} is open as
an infinite union of cylinders.

Product topology

Proposition 3.15 (Product topology). The topology T obtained by taking all
cylinders {⟦𝑤⟧ ∶ 𝑤 ∈ A∗𝑑} as a basis of open sets is exactly the product of the
discrete topology on each spaceA.

The topology T is thus called the product topology. By definition, a set
𝑈 ⊆ Aℤ𝑑 is open in the product topology if it can be written as an arbitrary
union of cylinders; it is closed if its complement 𝑈𝑐 is open.

Claim 3.16. Every cylinder ⟦𝑤⟧ is a clopen17 set in the product topology.

Proof. Let 𝐷 ⊆𝑓 ℤ𝑑 be a finite subset of ℤ𝑑, and 𝑤 ∈ A𝐷 be a pattern of
domain𝐷. Then ⟦𝑤⟧ is open as an element of the basis; and ⟦𝑤⟧𝑐 is open as
a union of open sets:

⟦𝑤⟧𝑐 = ⋃
𝑤′∈A𝐷∖{𝑤}

⟦𝑤′⟧.

A complete presentation of all the classical definitions from general topol-
ogy is outside the scope of this manuscrit. In fact, this thesis can be read
with only intuitive notions of limits and compactness, considered here as
“extraction arguments”.

Compactness One of the most important aspect of this topology is that all
full shifts are compact spaces, and thus extraction arguments can be applied
to sequences of configurations:

Proposition 3.17. For any dimension 𝑑 ∈ ℕ and alphabetA, the full shiftAℤ𝑑

is compact for the product topology.

Proof. SinceA is finite, thus compact for the discrete topology, byTychonoff’s
theorem18 we can conclude that anyAℤ𝑑 is compact. However, we prefer a
more combinatorial approach, based on a diagonal argument and the socket-
drawer principle. Let (𝑥(𝑛))𝑛∈ℕ be a sequence of configurations inAℤ𝑑:

• Considering the position 0 ∈ ℤ𝑑 and using the socket-drawer principle,
there exists 𝑎 ∈ A and infinitely many configurations from (𝑥(𝑛))𝑛∈ℕ
such that 𝑥(𝑛)

0 = 𝑎. We denote these configurations (𝑥0∶(𝑛))𝑛∈ℕ;
• More generaly, assume that there exists a subsequence (𝑥𝑘∶(𝑛))𝑛∈ℕ of
configurations such that, for any𝑛, 𝑛′ ∈ ℕ,𝑥0∶(𝑛)|[−𝑘..𝑘]𝑑 = 𝑥0∶(𝑛′)|[−𝑘..𝑘]𝑑 .
By the socket-drawer principleon these configurations, there exists
a pattern 𝑤 ∈ A[−𝑘−1..𝑘+1]𝑑 and infinitely many configurations from
(𝑥𝑘∶(𝑛))𝑛∈ℕ such that 𝑥𝑘∶(𝑛)|[−𝑘−1..𝑘+1]𝑑 = 𝑤. We denote these configu-
rations (𝑥𝑘+1∶(𝑛))𝑛∈ℕ.

Then the sequence (𝑥𝑛∶(0))𝑛∈ℕ, which is by construction a subsequence of
(𝑥(𝑛))𝑛∈ℕ, is converging in the product topology towards the limit configura-
tion 𝑥 ∈ Aℤ𝑑 defined by 𝑥|[−𝑛..𝑛]𝑑 = 𝑥𝑛∶(0)|[−𝑛..𝑛]𝑑 .

3.2.2 Subshifts

In this thesis, we chose to introduce subshifts as combinatorial objects based
on forbidden patterns. Since forbidding patterns define closed sets for the
product topology19, it should not come as a surprise that subshifts also enjoy
a very topological definition:

Proposition 3.18. In dimension 𝑑 ∈ ℕ and for an alphabetA, the subshifts of
Aℤ𝑑 are exactly the closed and shift-invariant subsets ofAℤ𝑑 .

Draft: June 5, 2025 at 14:45.

18 3 Symbolic dynamics

20 In fact, it is even metrizable.

Proof.
⟹ Let𝑋F ⊆ Aℤ𝑑 be a subshift for F a family of forbidden finite patterns.

Then𝑋 is shift-invariant, since a configuration avoids a given pattern
𝑤 ∈ F if and only if all its translations do. To prove that 𝑋 is closed,
notice that𝑋𝑐 is open as the following union of open sets:

𝑋𝑐 = {𝑥 ∈ Aℤ𝑑 ∶ ∃𝑤 ∈ F, 𝑤 ⊑ 𝑥}

= ⋃
𝑤∈F

⋃
𝑡∈ℤ𝑑

⟦𝜎𝑡(𝑤)⟧.

⟸ Let𝑋 ⊆ Aℤ𝑑 be a closed and shift-invariant subset ofAℤ𝑑 . Denoting
F = ⋃𝑛∈ℕ A

[−𝑛..𝑛]𝑑 ∖ L(𝑋), we prove that𝑋 = 𝑋F.
If 𝑥 ∈ 𝑋, then all patterns 𝑤 ⊑ 𝑥 and all their shifts appear in L(𝑋),
and consequently do not belong in F: thus, 𝑥 ∈ 𝑋F. Reciprocally,
consider 𝑥 ∈ 𝑋F: by definition of the language, for all 𝑛 ∈ ℕ, we
have 𝑥|[−𝑛..𝑛]𝑑 ∈ L[−𝑛..𝑛]𝑑(𝑋), so that there exists 𝑥(𝑛) ∈ 𝑋 such that
𝑥(𝑛)|[−𝑛..𝑛]𝑑 = 𝑥|[−𝑛..𝑛]𝑑 . Since 𝑥(𝑛) converges towards 𝑥 in Aℤ𝑑 , and
that𝑋 is closed, we conclude that 𝑥 ∈ 𝑋.

Corollary 3.19. Let𝑋 ⊆ Aℤ𝑑 be a subshift. Then𝑋 is compact.

Proof. 𝑋 ⊆ Aℤ𝑑 is a closed subset of a compact space, so it is compact.

Compactness is used in many proofs of this thesis, in the form of the
following “limit argument”: given a sequence of locally admissible patterns
(𝑢𝑛)𝑛∈ℕ of domain [−𝑛 .. 𝑛]𝑑 such that 𝑢𝑛 ⊑ 𝑢𝑛+1, then the limit config-
uration 𝑥 ∈ Aℤ𝑑 defined by 𝑥|[−𝑛..𝑛]𝑑 = 𝑢𝑛 is a valid configuration of the
subshift.
Another consequence that we sometimes use is that it is possible to ob-

tain a subshift by taking the topological closure of a set of shift-invariant
configurations:

Claim 3.20. Let 𝑋 ⊆ Aℤ𝑑 be a shift-invariant set of configuration. Then its
topological closure �̄� is a subshift �̄� ⊆ Aℤ𝑑 .

3.3 Morphisms

3.3.1 Morphisms and factors

Since subshifts are topological objects, it makes sense to consider their
morphisms, i.e. the transformations that preserve their structure.

Definition 3.21. In dimension 𝑑 ∈ ℕ and given two subshifts 𝑋 ⊆ Aℤ𝑑 and
𝑌 ⊆ Bℤ𝑑 , amorphism between𝑋 and 𝑌 is a continuous function 𝑓∶ 𝑋 → 𝑌 such
that 𝑓 ∘ 𝜎t = 𝜎t ∘ 𝑓 for every t ∈ ℤ𝑑.

In the formula 𝑓 ∘ 𝜎t = 𝜎t ∘ 𝑓, one should note that 𝜎t acts on two distinct
spaces.On the left-hand side of the equality,𝜎t acts on𝑋 ⊆ Aℤ𝑑; on the right-
hand side, 𝜎t acts on 𝑌 ⊆ Bℤ𝑑 . In terms of vocabulary, a function 𝑓∶ 𝑋 → 𝑌
that verifies the 𝜎-commuting condition is said to be 𝜎-equivariant.
As implied by the name, subshifts are preserved under morphisms: given

a morphism 𝑓∶ 𝑋 → Bℤ𝑑 , the set 𝑓(𝑋) ⊆ Aℤ𝑑 is actually a subshift: its shift-
invariance comes from the shift-equivariance of 𝑓; and since Bℤ𝑑 is Haus-
dorff20, while 𝑓(𝑋) is compact as the image of a compact set by a continuous
function, we deduce that 𝑓(𝑋) is closed.

Draft: June 5, 2025 at 14:45.

3.3 Morphisms 19

Since the product topology is defined in terms of cylinders, the continuity
of morphisms implies that the value of an image configuration can only
depend on finitely many positions of the initial configuration. This provides
another equivalent definition for morphisms, as the well-known cellular
automata:

[Hed69] Hedlund, “Endomorphisms and
automorphisms of the shift dynamical sys-
tem”.

Proposition 3.22 (Curtis-Hedlund-Lyndon theorem21 [Hed69]).

[Ric72] Richardson, “Tessellations with
local transformations”.

21 Gustav A. Hedlund co-credited Mor-
ton L. Curtis and Roger Lyndon as co-
discoverers of this result on ℤ. The gen-
eralization to higher dimensions followed
in [Ric72].

In di-
mension 𝑑 ∈ ℕ and given two subshifts 𝑋 ⊆ Aℤ𝑑 and 𝑌 ⊆ Bℤ𝑑 , a function
𝑓∶ 𝑋 → 𝑌 is a morphism if and only if it is a cellular automaton, i.e. there
exists some finite 𝑁 ⊆𝑓 ℤ𝑑 and a function 𝐹∶ A𝑁 → B such that:

∀𝑥 ∈ Aℤ𝑑 , ∀i ∈ ℤ𝑑, 𝑓(𝑥)i = 𝐹(𝑥|i+𝑁).

Proof.
⟸ If 𝑓 is given by a cellular automaton of finite neighborhood 𝑁 ⊆𝑓 ℤ𝑑

and rule 𝐹∶ A𝑁 → B, then 𝑓 is shift-equivariant by definition; and 𝑓 is
continuous for the product topology, since the preimage of a cylinder
of domain𝐷 ⊆ ℤ𝑑 is a union of cylinders of domain⋃i∈𝐷(i+𝑁), and
is in particular open.

⟹ Let 𝑓∶ 𝑋 → 𝑌 be a morphism. For any 𝑏 ∈ B (considered as a pattern
of domain ⟦1⟧𝑑), the cylinder ⟦𝑏⟧ ∩ 𝑌 is open in 𝑌: and since 𝑓 is contin-
uous, 𝑓−1(⟦𝑏⟧) is open in 𝑋. Thus, ⋃𝑏∈B⟦1⟧𝑑 𝑓−1(⟦𝑏⟧) is open and can
be written as a (potentially infinite) union of cylinders.
Since⋃𝑏∈B⟦1⟧𝑑 𝑓−1(⟦𝑏⟧) ⊇ 𝑋 and that𝑋 is compact, there exists finitely
many cylinders ⟦𝑤(1)⟧,…, ⟦𝑤(𝑘)⟧ that cover⋃𝑏∈B⟦1⟧𝑑 𝑓−1(⟦𝑏⟧).Denoting
by 𝑁 the finite set 𝑁 = ⋃𝑘

𝑖=1 dom(𝑤(𝑖)), we obtain that for any 𝑥 ∈ 𝑋,
the symbol 𝑓(𝑥)0 is entirely determined by 𝑥|𝐷; and there exists a
function 𝐹∶ 𝐷 → B such that 𝑓(𝑥)0 = 𝐹(𝑥|𝐷) for every 𝑥 ∈ 𝑋. Since 𝑓
is a morphism, it is 𝜎-equivariant, and we conclude that 𝑓 is the map
defined by the cellular automaton of rule 𝐹 and neighborhood 𝑁.

Since subshifts are preseved under morphisms, we define the notion of
factors of a subshift, which are the images of said subshift by morphisms:

Definition 3.23 (Factor). Let𝑋 ⊆ Aℤ𝑑 and 𝑌 ⊆ Bℤ𝑑 be two subshifts. 𝑌 is a
factor of 𝑓 if there exists a morphism 𝑓∶ 𝑋 → 𝑌 such that 𝑌 = 𝑓(𝑋).

In this case, 𝑓∶ 𝑋 → 𝑌 is also the factor map. We will often use the ter-
minology “factor map” in this thesis, as sofic subshifts will be defined in
Section 3.4 as factors of subshifts of finite type.

3.3.2 Isomorphisms and conjugacy

Isomorphisms are, in mathematics, structure-preserving mappings between
two objects of the same type. In the context of subshifts, they would be
defined as bijective morphisms whose inverse are also morphisms. However,
the latter condition is actually not needed:

Proposition 3.24. Let𝑋 ⊆ Aℤ𝑑 and 𝑌 ⊆ Bℤ𝑑 be two subshifts, and 𝑓∶ 𝑋 → 𝑌
be a bijective morphism. Then 𝑓−1 ∶ 𝑌 → 𝑋 is a morphism.

Proof. Since 𝑓∶ 𝑋 → 𝑌 is a continuous bijection between two compact
spaces, 𝑓−1 is also continuous. Since 𝑓 is shift-equivariant, 𝑓−1 is also shift-
equivariant, and we conclude that 𝑓−1 is a morphism.

Thus, we define isomorphisms as:

Draft: June 5, 2025 at 14:45.

20 3 Symbolic dynamics

22 From Definition 3.8: the entropy of a
subshift𝑋 ⊆ Aℤ𝑑 is:

ℎ(𝑋) = lim
𝑛1,…,𝑛𝑑∈ℕ𝑑

log |L⟦𝑛1,…,𝑛𝑑⟧(𝑋)|
𝑛1 ⋯𝑛𝑑

.

23 See Definition 3.34: a subshift is of fi-
nite type (SFT) if it can be defined by a
finite family of forbidden patterns.

24Where𝐴+𝐵 = {i+ j ∶ i ∈ 𝐴, j ∈ 𝐵}.

Definition 3.25 (Isomorphism). For𝑋 ⊆ Aℤ𝑑 and 𝑌 ⊆ Bℤ𝑑 two subshifts,
an isomorphism 𝑓∶ 𝑋 → 𝑌 is a bijective morphism.

Isomorphisms define a way to identify subshifts that share similar prop-
erties. Such subshifts are said to be conjugate:

Definition 3.26 (Conjugacy). Two subshifts 𝑋 ⊆ Aℤ𝑑 and 𝑌 ⊆ Bℤ𝑑 are
conjugate if there exists a bijective morphism 𝑓∶ 𝑋 → 𝑌.

3.3.3 Conjugacy invariants

Since conjugacy might be difficult to determine (when given two subshifts,
are they conjugate?), it is useful to consider the notion of conjugacy invari-
ants:

Definition 3.27 (Conjugacy invariant). Let 𝑓 be a function that associates to
a subshift𝑋 a mathematical object. Then 𝑓 is a conjugacy invariant if, for any
two conjugate subshifts𝑋 ⊆ Aℤ𝑑 and 𝑌 ⊆ Bℤ𝑑 , we have 𝑓(𝑋) = 𝑓(𝑌).

Informally, a conjugacy invariant is a mathematical object that represents
a subshift property that is shared by all conjugate subshifts. For example:

Example 3.28. Topological entropy22 is invariant under conjugacy.

Proof. If 𝑌 is a factor of 𝑋 by a morphism 𝑓∶ 𝑋 → 𝑌, let us consider an
associated cellular automaton of neighborhood [−𝑘 .. 𝑘] ⊆ ℤ𝑑 and local rule
𝐹∶ A[−𝑘..𝑘] → B. Then for 𝑛 ∈ ℕ, said cellular automaton defines a surjective
mapping between languages 𝐹𝑛 ∶ L⟦𝑛1,…,𝑛𝑑⟧(𝑋) → L⟦𝑛1−2𝑘,…,𝑛𝑑−2𝑘⟧(𝑌), so
that |L⟦𝑛1−2𝑘,…,𝑛𝑑−2𝑘⟧(𝑌)| ≤ |L⟦𝑛1,…,𝑛𝑑⟧(𝑋)|.
In other words, entropy decreases under factor maps: if 𝑋 and 𝑌 are

conjugate, this implies by symmetry that ℎ(𝑋) = ℎ(𝑌).

Example 3.29. Being of finite type23 is a conjugacy invariant.

Proof. Let 𝑋 ⊆ Aℤ𝑑 and 𝑌 ⊆ Bℤ𝑑 be two subshifts and 𝑓∶ 𝑋 → 𝑌 be an
isomorphism. By definition, there exists a finite neighborhood 𝑁 ⊆𝑓 ℤ𝑑

and a rule 𝐹∶ A𝑁 → B that defines 𝑓. Let us also assume that 𝑌 is an SFT:
there exists 𝑛 ∈ ℕ such thatF𝑌 = B⟦𝑛⟧𝑑 ∖L(𝑌) is a forbidden pattern family
defining 𝑌. Since 𝑁 ⊆ ℤ𝑑 is finite, let us consider F𝑋 = B⟦𝑛⟧𝑑+𝑁 ∖ L(𝑋).24
We prove that F𝑋 is a forbidden pattern family defining𝑋:

• Since F𝑋 ⊆ A∗𝑑 ∖ L(𝑋), we have𝑋 ⊆ 𝑋F𝑋
.

• On the other hand, let 𝑥 ∈ 𝑋F𝑋
be a configuration containing no

pattern of F𝑋. Since every 𝑥|i+𝑁 for i ∈ ℤ𝑑 is locally valid in 𝑋, and
that 𝑓 has neighborhood𝑁, the configuration 𝑓(𝑥) is well-defined; and
since every pattern of domain ⟦𝑛⟧𝑑 +𝑁 in 𝑥 is valid in𝑋, every pattern
of domain ⟦𝑛⟧𝑑 is valid in 𝑌. Thus, 𝑓(𝑥) ∈ 𝑌, and since 𝑓 is bijective we
conclude that 𝑥 ∈ 𝑋.

By definition, conjugacy invariants provide a sufficient condition for non-
conjugacy: for example, two subshifts𝑋 and 𝑌 of distinct entropies cannot
be conjugate. However, this condition is not necessary: two subshifts of the
same entropy may or may not be conjugate.
To illustate the variety of mathematical objects that can occur as conju-

gacy invariants, we also mention an algebraic conjugacy invariant: namely,
automorphism groups.

Draft: June 5, 2025 at 14:45.

3.4 Classes of subshifts 21

25 Recall that, onℤ𝑑, the standard unit vec-
tor e𝑘 ∈ ℤ𝑑 along the 𝑘th coordinate is de-
fined as (e𝑘)𝑗 = 0 if 𝑗 ≠ 𝑘, and (e𝑘)𝑗 = 1
otherwise.

26 Given a family of forbidden patternsF,
is the subshift𝑋F empty?
27 It is undecidable onWang tiles [Ber64],
and Wang tiles are a special case of local
subshift (see Section 12.1).

28 As do effective subshifts; but a prob-
lem turning out undecidable on effective
subshifts is probably less surprising than
its undecidability on subshifts defined by
finitely many patterns.

3.3.4 Automorphism groups

A special class of isomorphisms are the isomorphisms that map a subshift
onto itself:

Definition 3.30 (Automorphism). Given a subshift𝑋 ⊆ Aℤ𝑑 , an automor-
phism is an isomorphism 𝑓∶ 𝑋 → 𝑋 from𝑋 to itself.

As the composition of two automorphisms is an automorphism,we define:

Definition 3.31 (Automorphism group). Given a subshift 𝑋 ⊆ Aℤ𝑑 , the
automorphism group Aut(𝑋) is the set of all its automorphisms equipped with
map composition.

Informally, the automorphism group of a subshift defines its set of “sym-
metries”, i.e. all the ways to map it to itself while preserving its structure.

Proposition 3.32. The automorphism group is a conjugacy invariant.

Proof. Let𝑋 and 𝑌 be two conjugate subshifts, and 𝑓∶ 𝑋 → 𝑌 be an isomor-
phismbetween𝑋 and𝑌.Then the two groupsAut(𝑋) andAut(𝑌) are isomor-
phic by the group isomorphism 𝜙∶ 𝑔 ∈ Aut(𝑋) ↦ 𝑓 ∘ 𝑔 ∘ 𝑓−1 ∈ Aut(𝑌).

3.4 Classes of subshifts

As for languages of finite words, which are classified into local, regular,
context-free languages… depending on their computational properties, sev-
eral classes of subshifts have been introduced to stratify subshifts depending
on the complexity of their presentations. In this section, we define and re-
late the classes of local subshifts, subshifts of finite type, sofic subshifts and
effective subshifts.

3.4.1 Definitions

Local subshifts and subshifts of finite type

We begin with the definition of local subshifts, which are a straightforward
generalization of local languages of finite words:

Definition 3.33 (Local subshift). A subshift𝑋 ⊆ Aℤ𝑑 is local if there exists
a set of local validity rules 𝑉1,… , 𝑉𝑑 ⊆ A2 such that25:

𝑋 = {𝑥 ∈ Aℤ𝑑 ∶ ∀i ∈ ℤ𝑑, ∀𝑘 ∈ [1 .. 𝑑], (𝑥i, 𝑥i+e𝑘) ∈ 𝑉𝑘}.

In other words, if𝑋 is a local subshift, the validity of a configuration 𝑥 is
checked by considering the symbols coloring every pair of adjacent positions.
While they might seem very restricted, the Domino problem26 is already
undecidable on local subshifts

[Ber64] Berger, “The undecidability of
the Domino problem”.

27.
Extending forbbiden patterns to larger domains leads to the class of sub-

shifts of finite type:

Definition 3.34 (Subshift of finite type). A subshift 𝑋 ⊆ Aℤ𝑑 is of finite
type (SFT) if there exists a finite family of forbidden finite patterns F such that
𝑋 = 𝑋F.

Example 3.35. The subshift drawn in Example 3.4 is a subshift of finite type
(in fact, it is even a local subshift).

Draft: June 5, 2025 at 14:45.

22 3 Symbolic dynamics

29While it undecidable to knowwhether a
given patterns𝑤 ∈ A∗𝑑 is enumerated by
M, it is decidable to know, for a given 𝑛,
if it is enumerated in less than 𝑛 steps of
computation.

[Wei73] Weiss, “Subshifts of finite type
and sofic systems”.

Subshifts of finite type (SFTs) form the most classical class of multidi-
mensional subshifts. Most decision problems about subshifts are usually
defined on SFTs, because SFTs naturally provide a finite presentation to be
given as input to an algorithm28.
As we already mentioned after Definition 3.3, a given subshift can be

defined by many distinct families of forbidden finite patterns; and it is of
finite type if at least one of them is finite.

Effective subshifts

Definition 3.36 (Effective subshift). A subshift𝑋 ⊆ Aℤ𝑑 is effective if there
exists a computably enumerable family of forbidden finite patterns F such that
𝑋 = 𝑋F.

Effective subshifts are probably the most natural class of subshifts, at
least from an intuitive point of view, since they can be defined according to
arbitrary “algorithmic” conditions.
They are also the most natural class of subshifts on which it makes sense

to consider decision problems. In this thesis, we will sometimes say that a
decision problem takes as input an effective subshift𝑋 ⊆ Aℤ𝑑 – by which
we actually mean a Turing machine enumerating an effective family of
forbidden patterns F such that𝑋 = 𝑋F.
One could ask about the subshifts defined by computable families of pat-

terns. By definition, such subshifts are effective; and conversely:

Proposition 3.37. Let 𝑋 ⊆ Aℤ𝑑 be an effective subshift. There exists a com-
putable family of forbidden patterns F such that𝑋 = 𝑋F.

Proof. Let F ′ be a computably enumerable family of forbidden patterns
for 𝑋: it is enumerated by a Turing machineM. We use a standard fuel
argument from computability29 and define:

F = ⋃
𝑛∈ℕ

{𝑤 ∈ A⟦𝑛⟧𝑑 ∶ ∃𝑤′ ∈ A∗𝑑, 𝑤′ ⊑ 𝑤
and 𝑤′ has been enumerated byM in less than 𝑛 steps}.

Then F is computable and also defines the subshift𝑋.

Sofic subshifts

Sofic subshifts were originally introduced on ℤ in [Wei73]:

Definition 3.38 (Sofic subshift). A subshift 𝑌 ⊆ Aℤ𝑑 is sofic if it is the factor
of a subshift of finite type𝑋 ⊆ Bℤ𝑑 .

In the previous definition, the subshift𝑋 is called an SFT cover of 𝑌. Sofic
subshifts are the main objects of interests in this thesis.

Example 3.39. The most classical example of a sofic subshift is the sunny-side-
up subshift.On the alphabetA = { , }, it is the set of configurations containing
at most a single cell, i.e. 𝑌 = {𝑦 ∈ Aℤ ∶ ∀𝑖, 𝑗 ∈ ℤ, 𝑦𝑖 = 𝑦𝑗 = ⟹ 𝑖 = 𝑗}.

Indeed, consider the alphabet B = { , } and define𝑋 ⊆ Bℤ by the family of
forbidden patterns F = { }. Then𝑋 is the set of configurations of the form

,

along, of course, the full and the full configurations. Then𝑋 is an SFT cover
of 𝑌 by the cellular automaton of neighborhood 𝑁 = {−1, 0} ⊆ ℤ and local rule
𝐹∶ B𝑁 → A defined by 𝐹() = , and 𝐹(𝑤) = otherwise.

Draft: June 5, 2025 at 14:45.

3.4 Classes of subshifts 23

30 The sunny-side-up subshift is sofic but
not of finite type; and the mirror subshift
is effective but not sofic. See Chapter 6
and Chapter 7.

In Corollary 3.43, we prove an alternative characterization for sofic sub-
shifts (as letter-by-letter projections of local subshifts).

3.4.2 Relating classes of subshifts

The aforementioned classes of subshifts are naturally included into the next.
If local subshifts and SFTs are conjugated by Proposition 3.42, all the other
inclusions are strict30:

{Local subshifts} ⊆ {SFTs} ⊊ {Sofic subshifts} ⊊ {Effective subshifts}.

The only non-trivial inclusion is between sofic and effective subshifts:

Proposition 3.40. Let 𝑋 ⊆ Aℤ𝑑 be a sofic subshift. Then 𝑋 is an effective
subshift.

which follows from the more general statement:

Proposition 3.41. Let𝑋 ⊆ Aℤ𝑑 be the factor of an effective subshift. Then𝑋
is an effective subshift.

Proof. Let𝑋′ ⊆ Bℤ𝑑 be an effective subshift defined by a computably enu-
merable family of forbidden patterns F ′; and 𝑓∶ 𝑋′ → 𝑋 be a morphism of
finite neighborhood 𝑁 ⊆𝑓 ℤ𝑑 and a local rule 𝐹∶ B𝑁 → A.
For a pattern𝑤 ∈ A∗𝑑 of domain𝐷 = dom(𝑤), denote by 𝑓−1(𝑤) the set of

all preimages of 𝑤 by 𝑓, i.e. 𝑓−1(𝑤) = {𝑢 ∈ B𝐷+𝑁 ∶ ∀i ∈ 𝐷,𝐹(𝑢|i+𝑁) = 𝑤i}.
And let us define:

F = ⋃
𝑛∈ℕ

{𝑤 ∈ A⟦𝑛⟧𝑑 ∶ ∀𝑤′ ∈ 𝑓−1(𝑤), ∃𝑢 ∈ F ′ such that 𝑢 ⊑ 𝑤′}.

Then F is a computably enumerable family of forbidden patterns that yields
the subshift𝑋.

The rest of this section is dedicated to partial converse inclusions between
these classes.

SFTs and local subshifts

Proposition 3.42. Let𝑋 ⊆ Aℤ𝑑 be a subshift of finite type. There exists a local
subshift𝑋′ ⊆ Bℤ𝑑 that is conjugated to𝑋.

The proof just consists in taking a higher block code of the SFT𝑋:

Proof. For 𝑛 ∈ ℕ, let us denote the alphabet B = A[−𝑛..𝑛]𝑑 and the subshift
𝑋[𝑛] ⊆ Bℤ𝑑 defined as:

𝑋[𝑛] = {𝑥 ∈ Bℤ𝑑 ∶ ∃𝑥′ ∈ 𝑋, 𝑥i = 𝑥′|i+[−𝑛..𝑛]𝑑}.

𝑋[𝑛] is called a higher block code of the subshift𝑋. Since𝑋 is of finite type,
there exists some 𝑛 ∈ ℕ such that𝑋[𝑛] is a local subshift. Since𝑋[𝑛] and𝑋
are conjugate for every 𝑛 ∈ ℕ, this completes the proof.

Corollary 3.43. Let 𝑌 ⊆ Aℤ𝑑 be a sofic subshift. There exists an alphabet B, a
local subshift𝑋 ⊆ Bℤ𝑑 and a projection 𝜋∶ B → A such that 𝑌 = 𝜋(𝑋).

In this case, the subshift𝑋 is called a local cover of 𝑌.

Proof. By definition, there exists an SFT 𝑋′ and a factor map 𝑓∶ 𝑋′ → 𝑌.
By Proposition 3.22, 𝑓 is the map associated to a cellular automaton of
neighborhood 𝑁 ⊆𝑓 ℤ𝑑. Thus, there exists 𝑛 ∈ ℕ such that the higher
block code (see Proposition 3.42) 𝑋[𝑛] is a local subshift and such that
𝑁 ⊆ [−𝑛 .. 𝑛]𝑑: this concludes the proof.

Draft: June 5, 2025 at 14:45.

24 3 Symbolic dynamics

[Hoc09] Hochman, “On the dynamics
and recursive properties of multidimen-
sional symbolic systems”.
[AS13] Aubrun and Sablik, “Simulation
of effective subshifts by two-dimensional
subshifts of finite type”.
[DRS10] Durand, Romashchenko, and
Shen, “Effective closed subshifts in 1D can
be implemented in 2D”.

[Ber64] Berger, “The undecidability of
the Domino problem”.

Sofic and effective subshifts

By Proposition 3.40, sofic subshifts are effective. The following proposition
shows that effective subshifts turn out to be sofic, up to an increase in dimen-
sion: this initially appeared in [Hoc09], and was independently improved
in [AS13] and [DRS10]:

Proposition 3.44 ([AS13; DRS10]). Let𝑋 ⊆ Aℤ𝑑 be an effective subshift.
Then𝑋⇑ ⊆ Aℤ𝑑+1 is a sofic subshift.

Proving this statement is completely outside the scope of “gentle defi-
nitions”; however, we actually provide a novel proof of this result in Sec-
tion 14.3.1.

3.4.3 Computational considerations

To conclude this section, let us briefly mention some results about the com-
putability of languages of subshifts:

Proposition 3.45. Let𝑋 ⊆ Aℤ𝑑 be an effective subshift. Then the set of finite
patterns L(𝑋) ∩A∗𝑑 is a Π0

1 language.

Proof. LetF be a computably enumerable family of forbidden patterns defin-
ing 𝑋, and let 𝑤 ∈ A∗𝑑 be a pattern of finite domain 𝐷 ⊆𝑓 ℤ𝑑. Applying
compactness, 𝑤 is not valid in𝑋 if and only if:

∃𝑛 ∈ ℕ,∀𝑤′ ∈ {𝑤′ ∈ A[−𝑛..𝑛]𝑑 ∶ 𝑤′|𝐷 = 𝑤}, ∃𝑢 ∈ F such that 𝑢 ⊑ 𝑤′.

Since this condition is computably enumerable (i.e. Σ0
1), this concludes the

proof.

How hard can the languages of subshifts be? Since the domino problem
is undecidable on local subshifts [Ber64], we conclude that all these classes
of subshifts can have Π0

1-hard, thus Π0
1-complete, languages.

Since many properties of subshifts can actually be formulated on their lan-
guages, this implies that many properties of subshifts (even local subshifts)
are undecidable. This motivates the introduction of a new class/property of
subshifts:

Definition 3.46 (Computable subshift). A subshift𝑋 ⊆ Aℤ𝑑 is computable
if its set of finite patterns L(𝑋) ∩A∗𝑑 forms a computable language.

By definition, computable subshifts are effective. Yet, as mentioned above,
the class of computable subshifts is somewhat orthogonal to local, SFTs and
sofic subshifts: indeed, there exists effective and non-sofic subshifts with
computable languages, and local subshifts whose languages are undecidable.

3.5 Dynamics

Considering the action of ℤ𝑑 by translations on a subshift 𝑋 ⊆ Aℤ𝑑 , we
can study the behavior of the configurations of𝑋 under the action ℤ𝑑 ↷ 𝑋,
which results in a topological dynamical system. This allows to study the or-
bits of the configurations of𝑋 under various dynamical properties, including
periodicity, recurrence properties…

Draft: June 5, 2025 at 14:45.

3.5 Dynamics 25

[Des06] Desai, “Subsystem entropy for
ℤ𝑑 sofic shifts”.

3.5.1 Minimality

Definition 3.47 (Minimality). A subshift𝑋 ⊆ Aℤ𝑑 is minimal if it contains
no non-empty proper subshift (i.e. a subshift 𝑌 ⊆ 𝑋 verifies 𝑌 = ∅ or 𝑌 = 𝑋).

In the case of subshifts, this can be rephrased into the following statement:

Proposition 3.48. A subshift 𝑋 ⊆ Aℤ𝑑 is minimal if and only if for every
finite pattern 𝑤 ∈ L(𝑋) ∩A∗𝑑, there exists a size 𝑁 ∈ ℕ such that, for every
𝑤′ ∈ L⟦𝑁⟧𝑑(𝑋), we have 𝑤 ⊑ 𝑤′.

Proof. If𝑋 is minimal, then every finite pattern 𝑤 ∈ L(𝑋) ∩A∗𝑑 appears in
every configuration 𝑥 ∈ 𝑋: the rest of the proposition follows from𝑋 being
compact.

Minimality is a well-known restriction on the possible behaviors of sub-
shifts. For example:

Proposition 3.49. Let 𝑌 ⊆ Aℤ𝑑 be a sofic minimal subshift. Then ℎ(𝑌) = 0.

Proof. By [Des06, Corollary 4.5], a sofic shift 𝑌 of positive entropy is not
minimal.

Proposition 3.50. Let 𝑋 ⊆ Aℤ𝑑 be an effective minimal subshift. Then its
language of finite patterns L(𝑋) ∩A∗𝑑 is computable.

Proof. By Proposition 3.45, the language L(𝑋) ∩A∗𝑑 is Π0
1. We prove that

it is Σ0
1, i.e. computably enumerable. This holds by definition if𝑋 is empty;

and if𝑋 is non-empty, for 𝑤 ∈ A∗𝑑, let us consider the subshift𝑋∪{𝑤} ⊆ 𝑋
of𝑋 in which 𝑤 is also forbidden: since𝑋 is minimal, 𝑤 belongs in L(𝑋) if
and only if𝑋∪{𝑤} is empty, which is computably enumerable.

3.5.2 Transitivity and mixingness

Definition 3.51 (Transitivity). A subshift 𝑋 ⊆ Aℤ𝑑 is transitive if, for all
finite patterns 𝑢, 𝑣 ∈ L(𝑋) ∩A∗𝑑, there exists a configuration 𝑥 such that 𝑢 ⊑ 𝑥
and 𝑣 ⊑ 𝑥.

Intuitively, in a transitive subshift, all pairs of pattern must appear to-
gether in a configuration, without any way to control the distance between
their respective occurrences.
Mixingness is a stronger notion of recurrence which is well-defined on ℤ:

Definition 3.52 (Mixingness). A subshift 𝑋 ⊆ Aℤ𝑑 is mixing if, for every
𝑢, 𝑣 ∈ L(𝑋) ∩A∗, there exists 𝑛 ∈ ℕ and such that, for every |𝑛′| ≥ 𝑛, there
exists 𝑥 ∈ 𝑋 such that 𝑥 ∈ ⟦𝑢⟧ ∩ ⟦𝜎𝑛′(𝑣)⟧.

Intuitively, in amixing subshift, all pairs of patterns can appear together in
a configuration at all possible relative positions, according that said positions
are sufficiently far from one another.
On ℤ𝑑, defining mixingness is complicated by the fact that patterns can

have arbitrary shapes (e.g. rings, which could be nested). To avoid these
pathological cases, mixingness is often defined on rectangular patterns:

Definition 3.53 (Block-gluingness). A subshift 𝑋 ⊆ Aℤ𝑑 is 𝑓(𝑛)-block
gluing if, for all patterns 𝑢, 𝑣 ∈ L⟦𝑛⟧𝑑(𝑋), and for all positions i ∈ ℤ𝑑 such that
‖i‖ ≥ 𝑛 + 𝑓(𝑛), there exists 𝑥 ∈ 𝑋 such that 𝑥 ∈ ⟦𝑢⟧ ∩ ⟦𝜎i(𝑣)⟧.

The function 𝑓 in the previous definition is called the gluing distance. We
will often say that𝑋 is 𝑐-block gluing for 𝑐 ∈ ℕ if it is 𝑓(𝑛)-block gluing for
the constant function 𝑓∶ 𝑛 ↦ 𝑐.

Draft: June 5, 2025 at 14:45.

31Which is something most modern pro-
gramming languages are, unless specifi-
cally designed not to be.

32 Thesewill actually be non-deterministic
functions, i.e. multifunctions. But let us
not worry about that here.

Computability 4
This chapter introduces some elementary definitions from com-

putability theory: namely, the computable functions. Through encod-
ings, they allow to define computable sets and decisions problems.
We also present the arithmetical hierarchy, which stratisfies decision
problems depending on their degree of (un)computability.
Finally, we specify the log-RAMmodel that is used in this thesis

to state precise polynomial-time complexity results. We also reprove
several well-known computable transformations of programs (𝑆𝑚

𝑛
theorem, recursion theorems…) in the case of the log-RAMmodel,
and prove their preservation of time complexity.

4.1 Basic definitions

4.1.1 Computation model

To avoid relying too much on the specifics of a computational model, the
whole definitions will be stated for an informal but fixed Turing-complete
model31. Intuitively, a Turing-complete computational model should be able
to read a memory, write said memory, count and perform comparisons…
Since all Turing-complete computational models define the same set of com-
putable functions, this choice has no actual influence on the computability
notions it induces.
As with modern programming languages, programs (i.e. sequences of in-

structions performed by said fixed computational model) will be represented
as binary words 𝑒 ∈ {0, 1}∗, which are called codes. To fix one coding scheme,
𝑒 ∈ {0, 1}∗ will be the string (encoded in binary) representing the program
in our fixed programming language. To keep the difference between codes
and functions explicit, we denote:

Definition 4.1. Let 𝜑𝑒 ∶ ⊆ {0, 1}∗ → {0, 1}∗ be the (partial) function com-
puted by the program of code 𝑒 ∈ {0, 1}∗.

As is often the case in programming languages, the function 𝜑𝑒 is a partial
function from {0, 1}∗ to itself. This may be induced by computations that do
not terminate properly, e.g. if the program 𝑒 runs forever on an input, or if
the program 𝑒 crashes due to some programming error.
We denote 𝜑𝑒(𝑢)↓ to signify that the program of code 𝑒 halted properly

on the input word 𝑢 ∈ {0, 1}∗, and 𝜑𝑒(𝑢)↓ = 𝑣 to denote that 𝑣 ∈ {0, 1}∗ was
the ouput of the program of code 𝑒 on the input word 𝑢.

Note. In this thesis, programs will be written (unless otherwise specified) for
the Random-Access Machine model: in this context, 𝜑𝑒 will denote the function32
implemented by the RAM program of code 𝑒. See Section 4.3 for more details.

Draft: June 5, 2025 at 14:45. 27

28 4 Computability

4.1.2 Computable functions, computable sets

Since we have a definition of programs, computable functions are now the
partial functions that can be implemented as codes in our fixed programming
language:

Definition 4.2 (Computable function). A function 𝑓∶ ⊆ {0, 1}∗ → {0, 1}∗
is computable if there exists a code 𝑒 ∈ {0, 1}∗ such that 𝜑𝑒(𝑢)↓ = 𝑓(𝑢) for
𝑢 ∈ Dom(𝑓), and 𝜑𝑒(𝑢)↑ otherwise.

To define computations on arbitrary countable sets, we represent the
elements of these sets as binary strings.More precisely, for a countable set 𝑆,
an encoding is an injective map 𝜂∶ 𝑆 → {0, 1}∗. In this context:

Definition 4.3 (Computable function). Let 𝑆, 𝑆′ be two arbitrary countable
sets equipped with respective encoding 𝜂∶ 𝑆 → {0, 1}∗ and 𝜂′ ∶ 𝑆′ → {0, 1}∗. A
function 𝑓∶ ⊆∶ 𝑆 → 𝑆′ is computable if its encoding is computable, i.e. if the
function 𝜂(𝑠) ∈ {0, 1}∗ ↦ 𝜂′(𝑓(𝑠)) ∈ {0, 1}∗ is computable.

By definition, computability on a set 𝑆 depends on the chosen encoding
𝜂∶ 𝑆 → {0, 1}∗. Since most reasonnable encodings of classical objects are
computable from one another, we will often avoid specifying the encoding
altogether. Usually, integers of ℕ (resp. ℤ) are represented as binary strings
through their binary expansion; elements of ℕ𝑚 for arbitrary𝑚 as tuples of
integers; and booleans {⊤,⊥} as the 1-bit strings {1, 0}.
The adjective computable also naturally applies to sets:

Definition 4.4 (Computable set). A set 𝑆 ⊆ 𝑋 is computable if the function
1𝑆 ∶ 𝑋 → {⊤,⊥} defined by 1𝑆(𝑥) = 1 if 𝑥 ∈ 𝑆, and 1𝑆(𝑥) = 0 if 𝑥 ∉ 𝑆, is
computable.

4.1.3 Decision problems

From computability theory, we are mostly interested in the notion of decision
problems, i.e. functions 𝑓∶ {0, 1}∗ → {⊤,⊥} that can take two output values:
true (⊤) and false (⊥):

Definition 4.5 (Decision problem). A decision problem PROBLEM is a
function 𝑓∶ 𝑋 → {⊤,⊥}. An element 𝑥 ∈ 𝑋 is a positive instance of 𝑓 if
𝑓(𝑥) = ⊤; and a negative instance if 𝑓(𝑥) = ⊥.

In other words, a decision problem is a set. In this thesis, though, we will
often define a decision problem PROBLEM as a yes-or-no question about
some inputs:

PROBLEM
Input: some object 𝑥 ∈ 𝑋;
Question: does 𝑥 verify some property P?

to actually denote the set {𝑥 ∈ 𝑋∶ 𝑥 verifies P}. From the previous defini-
tions, a decision problem PROBLEM is computable (or decidable) if it defines
a computable set; and undecidable otherwise.

We finally introduce the notion of (many-one) reductions, which allow to
compare the difficulty of two decision problems:

Definition 4.6 ((Many-one reduction)). Let 𝐴 ⊆ 𝑋 and 𝐵 ⊆ 𝑋′ be two
decisions problems. We say that 𝐵 is harder than 𝐴 (or that 𝐴 reduces to 𝐵),
written 𝐴 ≤𝑚 𝐵, if there exists a total computable function 𝑓∶ 𝑋 → 𝑋′ such that
𝑥 ∈ 𝐴 if and only if 𝑓(𝑥) ∈ 𝐵.

Draft: June 5, 2025 at 14:45.

4.2 Arithmetical hierarchy 29

33 Given a code 𝑒 ∈ {0, 1}∗, does the func-
tion 𝜑𝑒 halt on the empty input?
34 To prove its semi-computability: begin
the computation of 𝜑𝑒(𝜀), and return ⊤ if
the computation halts.

Remark. ⚠ Notice that, in the previous definition, 𝑓 is not required to be
surjective.

Intuitively, reductions transform elements of the set𝑋 into elements of the
set𝑋′ so that positive instances of 𝐴 (resp. negative) are mapped to positive
instances of 𝐵 (resp. negative). In particular, if the set 𝐵 is computable, and
that 𝐴 (many-one) reduces to 𝐵, then 𝐴 is also computable.

4.1.4 Computably enumerable sets

Using the fact that computable functions can be partial, one defines semi-
computable sets as the sets whose membership can be decided only for
positive instances:

Definition 4.7 (Computably enumerable set). A set 𝑆 ⊆ 𝑋 is computably
enumerable if the partial function 1𝑆 ∶ ⊆ 𝑋 → {⊤,⊥} defined as 1𝑆(𝑥) = ⊤ if
𝑥 ∈ 𝑆 (and 1𝑆(𝑥) is undefined otherwise) is computable.
A set 𝑆 ⊆ 𝑋 is co-computably enumerable if𝑋 ∖ 𝑆 is computably enumerable.

The most famous undecidable set/decision problem is the Halting prob-
lem33, which is actually computably enumerable34.

4.2 Arithmetical hierarchy

Since we defined computable sets in the previous section, one could believe
that computability theory has nothing to say about sets that are not com-
putable. However, it turns out that computability allows to stratify subsets
of {0, 1}∗ depending on how undecidable they are.

4.2.1 Arithmetical hierarchy of sets

More precisely, the arithmetical hierarchy classifies the degree of uncom-
putability of a set 𝑋 ⊆ {0, 1}∗ depending on the number of alternating
quantifiers required to obtain it from computable sets:

Definition 4.8 (Arithmetical hierarchy). For 𝑛 ∈ ℕ, a set 𝑋 ⊆ {0, 1}∗ is
said to be

(i) Σ0
𝑛 if there exists a computable relation 𝑅 ⊆ ({0, 1}∗)𝑛+1 such that:

𝑋 = {𝑢 ∈ {0, 1}∗ ∶ ∃𝑣1, ∀𝑣2, ∃𝑣3 … 𝑅(𝑣1,… , 𝑣𝑛, 𝑢)}.

(ii) Π0
𝑛 if there exists a computable relation 𝑅 ⊆ ({0, 1}∗)𝑛+1 such that:

𝑋 = {𝑢 ∈ {0, 1}∗ ∶ ∀𝑣1, ∃𝑣2, ∀𝑣3 … 𝑅(𝑣1,… , 𝑣𝑛, 𝑢)}.

(iii) Δ0
𝑛 if it is both Σ0

𝑛 and Π0
𝑛.

Remark. As mentioned above, in these formulas, the alternance of quantifiers is
important: indeed, successive universal or successive existential quantifiers can,
through encoding of tuples, be collapsed into a single quantifier of the same type.

Example 4.9.
1. A set𝑋 ⊆ {0, 1}∗ is Σ0

𝑛 if and only if its complement {0, 1}∗ ∖ 𝑋 is Π0
𝑛.

2. A set𝑋 ⊆ {0, 1}∗ is Σ0
1 if and only if it is computably enumerable. Indeed,

there exists a computable relation 𝑅 ⊆ ({0, 1}∗)2 such that 𝑋 = {𝑢 ∈
{0, 1}∗ ∶ ∃𝑣 ∈ {0, 1}∗, 𝑅(𝑣, 𝑢)}. Then the program enumerating all 𝑣 ∈
{0, 1}∗ in parallel and checking whether𝑅(𝑣, 𝑢)↓ = ⊤ semi-decides whether
𝑢 ∈ 𝑋.

Draft: June 5, 2025 at 14:45.

30 4 Computability

[MP22] Monin and Patey, Calculabilité.
35 The book [MP22] is in French, but I am
very partial to this book. In fact, the idea
of defining computable functions with-
out first introducing a detailed computa-
tional model is directly inspired by their
approach of computability. Since an En-
glish version of the book is in preparation,
in a few years from now English speakers
should be able to follow this reference.

3. A set 𝑋 ⊆ {0, 1}∗ is Δ0
1 if and only if it is computable. Indeed, it is com-

putably and co-computably enumerable, and one answers whether 𝑢 ∈ 𝑋 by
running the positive and the negative enumerations in parallel and checking
which one answers.

Proposition 4.10. The sets of Σ0
𝑛 and Π0

𝑛 sets is stable by finite unions and
intersections.

Hint. Encode ({0, 1}∗)2 into {0, 1}∗ to quantify on pairs of strings.

Proposition 4.11. For 𝑛 ∈ ℕ, we have Σ0
𝑛 ⊊ Δ0

𝑛+1 and Π0
𝑛 ⊊ Δ0

𝑛+1.

Hints. The inclusions follow from the definition. To prove that these inclu-
sions are strict, one usually proves that the 𝑛th Turing jump ∅(𝑛) is Σ0

𝑛 and
cannot be Π0

𝑛, and encode the tuple (∅(𝑛), ℕ ∖ ∅(𝑛)) to obtain aΔ0
𝑛+1 set that

cannot be Σ0
𝑛 or Π0

𝑛. For more details, see [MP22, Corollaire 5.5.6]35.

Since the arithmetical hierarchy defines infinitely many levels and does
not collapse, we are interested in pinpointing the exact complexity of sets in
this hierarchy. Relying on the notion of (many-one) reductions introduced
earlier, consider:

Proposition 4.12. Let 𝐴 ⊆ {0, 1}∗ and 𝐵 ⊆ {0, 1}∗ be two sets such that
𝐴 ≤𝑚 𝐵. If 𝐵 is Σ0

𝑛 (resp. Π0
𝑛), then so is 𝐴.

Proof. Let 𝑓∶ {0, 1}∗ → {0, 1}∗ be a reduction from 𝐴 to 𝐵. If there exists a
computable predicate 𝑅 ⊆ ({0, 1}∗)𝑛 × {0, 1}∗ such that

𝐵 = {𝑢 ∈ {0, 1}∗ ∶ ∃𝑣1, ∀𝑣2,… 𝑅(𝑣1,… , 𝑣𝑛, 𝑢)},

then, since 𝑢 ∈ 𝐴 if and only if 𝑓(𝑢) ∈ 𝐵, we have:

𝐴 = {𝑢 ∈ {0, 1}∗ ∶ ∃𝑣1, ∀𝑣2,… 𝑅(𝑣1,… , 𝑣𝑛, 𝑓(𝑢))}.

Since 𝑓 is computable, the predicate 𝑅(⋯ , 𝑓(⋅)) is also computable and pro-
vides a Σ0

𝑛 presentation of 𝐴. The case Π0
𝑛 is symmetric.

Thus, we use many-one reductions to compare sets in the arithmetical
hierarchy:

Definition 4.13 (Hardness). A set 𝑋 ⊆ {0, 1}∗ is Σ0
𝑛-hard (resp. Π0

𝑛-hard)
if, for every Σ0

𝑛 set 𝐴 ⊆ {0, 1}∗ (resp. Π0
𝑛), we have 𝐴 ≤𝑚 𝑋.

In other words, a Σ0
𝑛-hard set𝑋 is harder (for many-one reductions) than

all Σ0
𝑛 sets. Intuitively, this means that 𝑋 is at level Σ0

𝑛 or higher in the
arithmetical hierarchy.

Definition 4.14 (Completeness). A set𝑋 ⊆ {0, 1}∗ is Σ0
𝑛-complete (resp.

Π0
𝑛-complete) if:
• 𝑋 is Σ0

𝑛-hard (resp. Π0
𝑛-hard);

• and𝑋 ∈ Σ0
𝑛 (resp.𝑋 ∈ Π0

𝑛).

Example 4.15. Already mentioned earlier, the Halting problemHALT is actually
Σ0

1-complete.

Proof. If 𝐴 ⊆ {0, 1}∗ is a Σ0
𝑛 set, there exists a code 𝑒 that enumerates the

elements of 𝐴. Let 𝑓 be the computable function that, on a given word
𝑢 ∈ {0, 1}∗, defines the program 𝑒𝑢 ∈ {0, 1}∗ that begins a computation 𝑓
and stops if 𝑒 ever enumerates 𝑢 (or keeps waiting otherwise). Then 𝜑𝑓(𝑢)(𝜀)
halts if and only if 𝑢 ∈ 𝐴, so that 𝑓 is a reduction from 𝐴 to HALT.

Draft: June 5, 2025 at 14:45.

4.2 Arithmetical hierarchy 31

[ZW01] Zheng and Weihrauch, “The
arithmetical hierarchy of real numbers”.

36 This is how the hierarchy was originally
introduced in [ZW01, Definition 7.1].

37 i.e 𝑟 ∈ 𝐴 ⟹ ∀𝑟′ ≤ 𝑟, 𝑟′ ∈ 𝐴.

Other examples of problems include FIN (given a code 𝑒 ∈ {0, 1}∗, does
it halt on finitely many inputs?), which is Σ0

2-complete; COFIN (given a
code 𝑒 ∈ {0, 1}∗, does 𝜑𝑒 halt on all but finitely many inputs), which is
Σ0

3-complete…

Remark 4.16. Though we formally defined the arithmetical hierarchy on sets of
binary strings, these definitions extend through encodings to arbitrary encoded
sets.

4.2.2 Arithmetical hierarchy of real numbers

Real numbers can also be classified depending on their computational prop-
erties. For example:

Definition 4.17. A real number 𝑥 ∈ ℝ is computable if there exists a com-
putable function 𝑓∶ ℕ → ℚ such that, for all 𝑛 ∈ ℕ, we have |𝑥 − 𝑓(𝑛)| ≤ 2−𝑛.

Since the set of computable functions is countable, only a countable subset
of real numbers is actually computable. However, most “practical” real
numbers turn out to be computable: this includes all rational numbers, usual
operations on real numbers (addition, product, exponential, logarithm…),
and many constants 𝜋, 𝑒, …
The arithmetical hierarchy can also stratify real numbers depending on

the difficulty of approximating them computably [ZW01]:

Definition 4.18 (Arithmetical hierarchy on ℝ). For 𝑛 ∈ ℕ, a real number
𝑥 ∈ ℝ is said to be:

(i) Σ𝑛 if the set {𝑟 ∈ ℚ∶ 𝑟 ≤ 𝑥} is a Σ0
𝑛 subset of ℚ.

(ii) Π𝑛 if the set {𝑟 ∈ ℚ∶ 𝑟 ≤ 𝑥} is a Π0
𝑛 subset of ℚ.

(iii) Δ𝑛 if 𝑥 is both Σ𝑛 and Π𝑛.

In the sameway sets are classified in the arithmetical hierarchy depending
on the number of alternating quantifiers in their definition, the arithmetical
hierarchy classifies real numbers depending on the number of alternating
limit operations required to define them36:

Proposition 4.19. For 𝑛 ∈ ℕ, a real number 𝑥 ∈ ℝ is:

(i) Σ𝑛 if and only if there exists a computable function 𝑓∶ ℕ𝑛 → ℚ such that
𝑥 = sup𝑖1 inf𝑖2 sup𝑖3 …𝑓(𝑖1,… , 𝑖𝑛).

(ii) Π𝑛 if and only if there exists a computable function 𝑓∶ ℕ𝑛 → ℚ such that
𝑥 = inf𝑖1 sup𝑖2 inf𝑖3 …𝑓(𝑖1,… , 𝑖𝑛).

Proof. We prove by induction that if 𝐴 ⊆ ℚ is a Σ0
𝑛 and downwards closed37

(resp. upwards closed) set described by a computable relation 𝑅 ⊆ ℕ𝑛 ×ℚ,
then there exists a function 𝑓∶ ℕ𝑛 → ℚ, which is computable from𝑅, such that
sup𝐴 = sup𝑖1 inf𝑖2 … 𝑓(𝑖1,… , 𝑖𝑛) (resp. inf𝐴 = inf𝑖1 sup𝑖2 … 𝑓(𝑖1,… , 𝑖𝑛)):

• 𝑛 = 1: assume that 𝐴 ⊆ ℚ is downwards closed (resp. upwards closed)
and Σ0

1 set: from a relation 𝑅 ⊆ ℕ × 𝑄 describing 𝐴, we compute
a surjective enumeration 𝑓∶ ℕ → 𝐴 that verifies sup𝑖1 𝑓(𝑖1) = sup𝐴(resp. inf𝑖1 𝑓(𝑖1) = inf𝐴).

• Assume that 𝐴 ⊆ ℚ is downwards closed and Σ0
𝑛+1 set. By definition,

there exists a computable relation 𝑅∶ ℕ𝑛 × ℚ such that 𝑟 ∈ 𝐴 if and
only if ∃𝑖1, ∀𝑖2,… 𝑅(𝑖1,… , 𝑖𝑛, 𝑟). Thus:

𝐴 = ⋃
𝑖1

{𝑟 ∈ ℚ∶ ∀𝑖2, ∃𝑖3,… 𝑅(𝑖1, 𝑖2,… , 𝑖𝑛, 𝑟)}.

Draft: June 5, 2025 at 14:45.

32 4 Computability

38 Here, we use that the functions 𝑓𝑖1 ob-
tained by induction hypothesis can all be
computed from𝑅′(𝑖1,⋯).

The sets on the right-hand side of the equation are uniform Π𝑛 sets,
but not necessarily downwards closed: thus, we define a new relation
𝑅′ ∶ ℕ𝑛 ×ℚ → {⊤,⊥} by𝑅′(𝑖1,… , 𝑖𝑛, 𝑟) if and only if, decoding 𝑖1 ∈ ℕ
as a pair (𝑖′1, 𝑟′) ∈ ℕ × ℚ, we have 𝑅(𝑖′1,… , 𝑖𝑛, 𝑟′) and 𝑟 ≤ 𝑟′. Denot-
ing 𝐴𝑖1 = {𝑟 ∈ ℚ∶ ∀𝑖2, ∃𝑖3,… 𝑅′(𝑖1,… , 𝑖𝑛, 𝑟)}, each 𝐴𝑖1 is downwards
closed and we have

𝐴 = ⋃
𝑖1

𝐴𝑖1

since 𝐴 was already downwards closed. Thus, 𝐴 is a uniform union
of downwards closed and Π0

𝑛 sets. By induction hypothesis on the
complementsℚ ∖ 𝐴𝑖1 , there exists a computable function

38 𝑓∶ ℕ𝑛 → ℚ
such that, for all 𝑖1 ∈ ℕ:

inf
𝑖2
sup
𝑖3

… 𝑓(𝑖1, 𝑖2,… , 𝑖𝑛) = inf(ℚ ∖ 𝐴𝑖1).

Since the𝐴𝑖1 are downwards closed, notice that inf(ℚ ∖ 𝐴𝑖1) = sup𝐴𝑖1 .
Since sup𝐴 = sup𝑖1 sup𝐴𝑖1 , and that a similar reasonning applies to
upwards-closed and Σ0

𝑛+1 sets, this concludes the induction.

The converse statement is much easier to prove: let 𝑓∶ ℕ𝑛 → ℚ be a
computable function such that 𝑥 = sup𝑖1 inf𝑖2 sup𝑖3 … 𝑓(𝑖1,… , 𝑖𝑛). Then

𝑟 ≤ 𝑥 ⟺ 𝑟 ≤ sup
𝑖1
inf
𝑖2
sup
𝑖3

… 𝑓(𝑖1,… , 𝑖𝑛)

⟺ ∃𝑖1, 𝑟 ≤ inf𝑖2
sup
𝑖3

… 𝑓(𝑖1,… , 𝑖𝑛)

⟺ ∃𝑖1, ∀𝑖2, 𝑟 ≤ sup
𝑖3

…𝑓(𝑖1,… , 𝑖𝑛)

⟺ …

⟺ ∃𝑖1, ∀𝑖2, ∃𝑖3,… 𝑟 ≤ 𝑓(𝑖1,… , 𝑖𝑛);

so that {𝑟 ∈ ℚ∶ 𝑟 ≤ 𝑥} is a Σ0
𝑛 set.

Following the previous proposition, arithmetical real numbers are given
by alternating limit operations on sequences of rational numbers. It is, how-
ever, possible to assume some natural monotonicity conditions on these
sequences:

Proposition 4.20. For 𝑛 ∈ ℕ, a real number 𝑥 ∈ ℝ is:

(i) Σ𝑛 if and only if there exists a computable function 𝑓∶ ℕ𝑛 → ℚ such that
𝑥 = sup𝑖1 inf𝑖2 sup𝑖3 … 𝑓(𝑖1,… , 𝑖𝑛); and:
the sequence 𝑖1 ↦ inf𝑖2 sup𝑖3 … 𝑓(𝑖1,… , 𝑖𝑛) is increasing; the sequences
𝑖2 ↦ sup𝑖3 inf𝑖4 … 𝑓(𝑖1,… , 𝑖𝑛) are decreasing for fixed 𝑖1; the sequences
𝑖3 ↦ inf𝑖4 sup𝑖4 … 𝑓(𝑖1,… , 𝑖𝑛) are increasing for fixed (𝑖1, 𝑖2) ∈ ℕ2; etc…

(ii) Π𝑛 if and only if there exists a computable function 𝑓∶ ℕ𝑛 → 𝑄 such that
𝑥 = inf𝑖1 sup𝑖2 inf𝑖3 … 𝑓(𝑖1,… , 𝑖𝑛); and:
the sequence 𝑖1 ↦ inf𝑖2 sup𝑖3 … 𝑓(𝑖1,… , 𝑖𝑛) is decreasing; the sequences
𝑖2 ↦ sup𝑖3 inf𝑖4 … 𝑓(𝑖1,… , 𝑖𝑛) are increasing for fixed 𝑖1; the sequences
𝑖3 ↦ inf𝑖4 sup𝑖4 … 𝑓(𝑖1,… , 𝑖𝑛) are decreasing for fixed (𝑖1, 𝑖2) ∈ ℕ2; etc…

Proof. Let 𝑥 ∈ ℝ be a real number given by a function 𝑓 ′ ∶ ℕ𝑛 → ℚ such that
𝑥 = … inf𝑖𝑛−2

sup𝑖𝑛−1
inf𝑖𝑛 𝑓 ′(𝑖1,… , 𝑖𝑛). We replace 𝑓 ′ by the function 𝑓:

𝑓(𝑖1,… , 𝑖𝑛) = … min
𝑖′𝑛−2≤𝑖𝑛−2

max
𝑖′𝑛−1≤𝑖𝑛−1

min
𝑖′𝑛≤𝑖𝑛

𝑓 ′(𝑖′1,… , 𝑖′𝑛).

Then 𝑓∶ ℕ𝑛 → ℚ is computable and verifies the desired monotonicity prop-
erties. We are left with cheecking that 𝑥 is the limit of 𝑓: fixing the first

Draft: June 5, 2025 at 14:45.

4.3 The RAM model 33

39 For example, a deterministic multitape
Turing machine can simulate the execu-
tion of RAM programs up to a polynomial
factor overhead in time complexity.

[Mel61] Melzak, “An informal arithmeti-
cal approach to computability and compu-
tation”.
[Wan57] Wang, “A variant to Turing’s
theory of computing machines”.
[Min61]Minsky, “Recursive unsolvability
of Post’s problem of “tag” and other topics
in theory of Turing machines”.
[ER64] Elgot and Robinson, “Random-
access stored-program machines, an ap-
proach to programming languages”.
[Har71]Hartmanis, “Computational com-
plexity of random access stored program
machines”.
[CR73] Cook and Reckhow, “Time
bounded random access machines”.
[KR84] Kirkpatrick and Reisch, “Upper
bounds for sorting integers on random ac-
cess machines”.
[HS74] Hartmanis and Simon, “On the
power of multiplication in random access
machines”.
[Sli78] Slissenko, «Методы вычислений,
основанные на адресной организации
памяти».
[Sli79] Slissenko, «Сложностные задачи
теории вычислений».
[Sli81] Slissenko, «Поиск периодично-
стей и идентификация полслов в реаль-
ное время».
[AV79] Angluin and Valiant, “Fast prob-
abilistic algorithms for Hamiltonian cir-
cuits and matchings”.

(𝑛 − 1) variables 𝑖1,… , 𝑖𝑛−1 ∈ ℕ, we have:

inf
𝑖𝑛

𝑓(𝑖1,… , 𝑖𝑛−1, 𝑖𝑛) = inf𝑖𝑛
… max

𝑗𝑛−1≤𝑖𝑛−1
min
𝑗𝑛≤𝑖𝑛

𝑓 ′(𝑗1,… , 𝑗𝑛)

= (By monotonicity, the limit exists.)lim
𝑖𝑛

… max
𝑗𝑛−1≤𝑖𝑛−1

min
𝑗𝑛≤𝑖𝑛

𝑓 ′(𝑗1,… , 𝑗𝑛)

= … max
𝑗𝑛−1≤𝑖𝑛−1

lim
𝑖𝑛
min
𝑖′𝑛≤𝑖𝑛

𝑓 ′(𝑗1,… , 𝑗𝑛)

= … max
𝑗𝑛−1≤𝑖𝑛−1

inf
𝑖𝑛

𝑓 ′(𝑗1,… , 𝑗𝑛−1, 𝑖𝑛).

By decreasing induction on the number of fixed variables, we conclude that
𝑥 = … inf𝑖𝑛−2

sup𝑖𝑛−1
inf𝑖𝑛 𝑓(𝑖1,… , 𝑖𝑛). The other case being symmetric, this

concludes the proof.

4.3 The RAMmodel

Since the most common models (e.g. Turing machines, various Random
Access Machines…) simulate each other with small overhead39, complexity-
related results often try to abstract themselves from the specifics of a given
computational model. However, in this thesis, we will need (for example in
Theorem 10.11) precise computation times, in which a polynomial overhead
is not acceptable. Thus, we need to precisely state the computation model
used: here, Random Access Machines with non-unit arithmetic operations.

Random Access Machines (RAM) belong to the general class of register
machines, which can be informally defined as a computational model that
operates on multiple registers, each containing a single integer. These mod-
els were mostly developed during the 60s and early 70s, as alternatives to
Turing machines that would better reflect the inner workings of modern
computers: for example, let us mention the “pebbles in the ground” model
[Mel61], various “counter machines” [Wan57; Min61], “Random Access
Stored Programmachines” [ER64;Har71] and “RandomAccessMachines”
[CR73].
Two main competing models of complexity have been considered on Ran-

domAccessMachines: the unit costmodel (arithmetic operations are unitary
constant time operations), and the logarithmic cost model (arithmetic oper-
ations happen in linear time relatively to the length of the integers involved).
Very early in the history of these machines, it was noticed that unit cost
and unbounded integers in registers could lead to somewhat unrealistic re-
sults: sorting an array in linear time [KR84], or solving PSPACE-complete
problems in polynomial time [HS74]. Yet, most time complexity analysis
is done with the unit criterion. There probably are two reasons for this:
first, analysis of algorithms is easier with the unit cost criterion; second,
reasonnable people will not cheat and will limit their RAM algorithms to
“small integers”.
The latter idea was formally introduced in the “Logarithmic Random

Access Machines” model in [Sli78; Sli79; Sli81]: this model limits register
sizes to 𝑂(log𝑛), where 𝑛 is the size of the input. Variations of this model
also appeared in the litterature, for example “Random Access Computers”
in [AV79, Appendix 1].

Draft: June 5, 2025 at 14:45.

34 4 Computability

40 i.e. least significant digit first.

41 This is a bad situation. We do not want
that.

4.3.1 Random Access Machines

In the RAM model, registers (i.e. variables and memory cells) contain bi-
nary words, which are either read litteraly as strings of {0, 1}∗ or as natural
numbers of ℕ (little-endian40).

Definition 4.21. A Random Access Machine is composed of:

(i) A program, which is a finite sequence of instructions (see below) indexed
by integers; and an instruction pointer IP ∈ ℕ, which points to the
instruction currently executed in the program;

(ii) A finite set of variables 𝑉, each containing a binary string;
(iii) Amemory composed of infinitely manymemory cells (𝑀[𝑗])𝑗∈ℕ indexed

(or “addressed”) by ℕ, each containing a binary string;
(iv) An input array (𝐼[𝑗])𝑗∈ℕ and an output array (𝑂[𝑗])𝑗∈ℕ, each composed

input cells (resp. output cells) containing binary strings and indexed by ℕ.

A program in the RAMmodel is a finite sequence of instructions among
the following set. Each instruction is given with its syntax and a high-level
semantics. The names var0, var1 and var2 denote arbitrary variables of 𝑉.
At the end of each instruction (unless the instruction modified it, e.g. with
GOTO), the instruction pointer IP is set to IP+ 1.

Memory management:
var0 ^<- I[var1] Copy the word 𝐼[var1] from the input array into the variable var0.
O[var0] ^<- var1 Outputs the word var1 onto the cell 𝑂[var0] of the output array.
var0 ^<- n Set the variable var0 to the constant 𝑛 ∈ ℕ.
var0 ^<- M[var1] Set the variable var0 to the content of the memory cell𝑀[var1].
var0 ^<- NDET Non-deterministically set the variable var0 to any integer 𝑛 ∈ ℕ.
M[var0] ^<- var1 Set the memory cell𝑀[var0] to the value of the variable var1.

Control instructions:
var0 ^<- IP Set the variable var0 to the value of the instruction counter IP.
IF var0=0, GOTO var1 If var0 is equal to 0, set IP to var1; otherwise, set IP to IP+ 1.
HALT Halt the execution in a valid state.
CRASH Run the machine forever in an error state.

Operations:
var0 ^<- var1 + var2 Set var0 to var1 + var2.
var0 ^<- var1 - var2 Set var0 to var1 − var2 (truncated to 0 if negative).
var0 ^<- var1 * var2 Set var0 to var1 × var2.
var0 ^<- var1 / var2 Set var0 to var1 / var2.
var0 ^<- var1 && var2 Set var0 to the bitwise AND of var1 and var2.
var0 ^<- var1 || var2 Set var0 to the bitwise OR of var1 and var2.
var0 ^<- ¬var1 Set var0 to the bitwise NOT of var1.
var0 ^<- lshift var1 Set var0 to the left shift of var1 (leftmost bit is removed).
var0 ^<- rshift var1 Set var0 to the right shift of var1 (padding with a 0).

The set of operations of our model is quite arbitrary, though one could
argue it provides most functionalities modern assembler languages do.Most
“missing instructions” (e.g.max and min, jumps based on more complex
comparisons…) can be written as combinations of our given set of instruc-
tions.

Following a long tradition in the history of computer programming, the
correct behavior of RAM programs in not enforced syntaxically. In other
words, if an instruction has an undefined effect (for example, setting the
instruction pointer IP outside of the program, dividing by zero, or reading a
memory cell that has not been written yet), the machine is assumed to crash
and catch fire41.

Draft: June 5, 2025 at 14:45.

https://en.wikipedia.org/wiki/Halt_and_Catch_Fire_(computing)
https://en.wikipedia.org/wiki/Halt_and_Catch_Fire_(computing)

4.3 The RAM model 35

42 Much to everybody’s joy and peace of
mind.

[HS74] Hartmanis and Simon, “On the
power of multiplication in random access
machines”.

4.3.2 Non-determinism, computability and time
complexity

Unlike what had been defined in the previous sections, this RAMmodel has
a few specificities that distinguish it from other computational models:

• RAM programs define non-deterministic functions, because the instruc-
tion var ^<- NDET allows to fill non-deterministically a given memory
cell with an unknown integer;

• RAM programs define (non-deterministic) maps between arrays of
binary strings ({0, 1}∗)∗.

Thus, we revisit some of the previous definitions.
By encoding sequences of instructions into binary strings, we consider

RAM programs as binary strings 𝑒 ∈ {0, 1}∗; thus, we still denote:

Definition 4.22. Let 𝜑𝑒 ∶ ⊆ ({0, 1}∗)∗ ⇉ ({0, 1}∗)∗ be the multifunction
computed by the RAM program of code 𝑒 ∈ {0, 1}∗, i.e. the association of all
inputs 𝐼 ∈ ({0, 1}∗)∗ and outputs 𝑂 ∈ ({0, 1}∗)∗ such that 𝑒 admits a run on the
input 𝐼 that halts in a valid state and outputs 𝑂.

We denote by 𝜑𝑒(𝐼)↓ the set of all output arrays 𝑂 ∈ ({0, 1}∗)∗ such that
there exists a run of the RAM program 𝑒 on the input array 𝐼 that halts in a
valid state with output 𝑂. For a time 𝑡 ∈ ℕ, we denote by 𝜑𝑒(𝐼)↓[𝑡] the set of
all ouput arrays such that there exists a run of the RAM program 𝑒 on the
input array 𝐼 that halts in a valid state with output 𝑂 and has length ≤ 𝑡.

Definition 4.23. Amultifunction 𝑓∶ ⊆ ({0, 1}∗)∗ ⇉ ({0, 1}∗)∗ is computable
if there exists a code 𝑒 ∈ {0, 1}∗ such that 𝜑𝑒(𝐼)↓ = 𝑓(𝐼) for every 𝐼 ∈ Dom(𝑓),
and 𝜑𝑒(𝐼)↑ otherwise.

In this case, we say that the code 𝑒 computes the multifunction 𝑓.
As earlier, the computability of (multi)functions ({0, 1}∗)∗ ⇉ ({0, 1}∗)∗

extends from arrays of binary words {0, 1}∗ to booleans {⊤,⊥}, integers ofℕ,
etc… with straightforward encodings. In fact, all previous computability no-
tions (e.g. computability on sets) naturally extend to the non-deterministic
setting.

We can now define the time complexity of non-deterministic functions:

Definition 4.24. A multivalued function 𝑓∶ ({0, 1}∗)∗ ⇉ ({0, 1}∗)∗ has time-
complexity 𝑡(𝑠) if there exists a code 𝑒 ∈ {0, 1}∗ that computes 𝑓 and such that
for all 𝐼 ∈ Dom(𝑓), we have 𝜑𝑒(𝐼)↓[𝑡(𝑠)] = 𝑓(𝐼), where 𝑠 = ∑+∞

𝑗=1 |𝐼[𝑗]| is the bit
length of the array input 𝐼.

Intuitively, the code 𝑒 should compute the function 𝑓; and for all ouputs
𝑂 ∈ 𝑓(𝐼), there should exist a run of 𝑒 on input 𝐼 that outputs 𝑂 in less than
𝑡(𝑠) steps.
Having a well-defined computational model allows us to compute precise

upper bounds on the complexity of any given problem. Since our set of
instructions is actually rich enough to compute everything that is computable
by a real-world programming language, and with identical running times,
this thesis will not42 contain any explicit word RAM program. Instead, it
will only contain sketches of algorithms and a few pointers (very often, ideas
of data structures) for their efficient RAM implementation.

4.3.3 log-Random Access Machines

The RAMmodel allows for arithmetic operations in constant time on in-
tegers of arbitrary sizes, which has unintended consequences – including

Draft: June 5, 2025 at 14:45.

36 4 Computability

[Kle38] Kleene, “On notation for ordinal
numbers”.

solving PSPACE-complete problems in polynomial time [HS74]. A classical
restriction on its expressive power suggests to impose bounds on the word
length of all variables and registers: however, since such a bound on the
variables imply a bound on the memory cells that can be addressed, and thus
accessed, a constant bound on the word length would result in such RAM
machines being very shiny finite state automaton. Thus, we consider the
log-RAMmodel:

Definition 4.25. A log-Random Acess Machine is a RAM machine in which
the word length of all variables and memory cells is bounded by 𝑂(log(𝑠)), for 𝑠
the bit size of the input.

As with other undefined operations, integer overflows (in case of addi-
tion, multiplication or bitwise manipulations) are not defined behaviors of
log-RAMmachines and programmers should be careful in not letting one
happen.

Remark 4.26. In Theorem 10.11, its proof and applications (i.e. for most of the
second half of this thesis), results will be stated and proved on the log-RAMmodel.
The remainder of this chapter applies on both RAM and log-RAM machines,
which will be mentioned if applicable.

4.3.4 Enumerations and basic transformations

Since a code is simply a binary string 𝑒 ∈ {0, 1}∗, it is actually possible for
RAMprograms to act on other RAMprograms. In what follows, we consider
a few classical results about such transformations.

Hardcoding input values The first result we mention is the possibility to
computably hardcode the value of some input cells in the code of a program
𝑒 ∈ {0, 1}∗: this is the famous 𝑆𝑚

𝑛 theorem [Kle38].

Proposition 4.27 (𝑆𝑚
𝑛 theorem). For every𝑚 ∈ ℕ, there exists a computable

total function 𝑆𝑚 ∶ {0, 1}∗ × ({0, 1}∗)𝑚 → {0, 1}∗ such that, for every code
𝑒 ∈ {0, 1}∗ and every input array 𝐼 ∈ ({0, 1}∗)∗,

𝜑𝑒(𝐼) = 𝜑𝑆𝑚(𝑒,𝐼[0],…,𝐼[𝑚−1])(𝐼[𝑚∶]).

Furthermore, if 𝑒 had time-complexity 𝑡(𝑠), then 𝑆𝑚(𝑒, 𝐼[0],… , 𝐼[𝑚 − 1]) has
time complexity 𝑂(𝑡(𝑠)).

In other words, on RAMmachines, the 𝑆𝑚
𝑛 theorem preserves running

times up to a constant factor.

Sketch of proof. The function 𝑆𝑚(𝑒, 𝑥1,… , 𝑥𝑚) performs the following trans-
formations on the program 𝑒: it replaces every input reading instruction
var0 ^<- I[var1] by the following sequence of instructions:

• Check the value of the variable var1.
• If it is smaller than𝑚, then copy the constant 𝑥𝑚 into var0;
• If it is larger than𝑚, then copy the input cell of index var1 −𝑚 into
var0;

Since we introduce several instructions for each previously existing single
input reading instruction, do not forget to update all GOTO instructions from
the original program 𝑒 so that they point to the correct position in the new
program 𝑆𝑚(𝑒, 𝑥1,… , 𝑥𝑚).

Remark 4.28. If 𝑒 is a log-RAM program, then 𝑆𝑚(𝑒, 𝑥1,… , 𝑥𝑚) is also a
log-RAM program.

Draft: June 5, 2025 at 14:45.

4.3 The RAM model 37

43 If this step does not halt, the associated
computation 𝜑𝑏(𝐼) runs forever.

44Where 𝑛 ∶ 𝐼 denotes the concatenation
of 𝑛 with 𝐼.

45 And, for example, print it: these are
quines.

Recursion and fixpoint theorems Kleene’s first recursion theorem (also
from [Kle38]) states that total computable functions must have some pro-
grams whose behaviors are not modified:

Proposition 4.29. For every computable total function 𝐹∶ {0, 1}∗ → {0, 1}∗,
there exists 𝑒 ∈ {0, 1}∗ such that 𝜑𝑒 = 𝜑𝐹(𝑒).
Furthermore, if the code 𝐹(𝑒) has time-complexity 𝑡(𝑠) on valid input arrays
𝐼 ∈ Dom(𝜑𝐹(𝑒)) = Dom(𝜑𝑒) of bit size 𝑠, then 𝑒 has time complexity 𝑂(𝑡(𝑠)).

Proof. Let 𝑏 ∈ {0, 1}∗ be the following code: on a given array 𝐼 ∈ ({0, 1}∗)∗,
• Let 𝑛 = 𝐼[0] and 𝐼′ = 𝐼[1∶], and compute 𝜑𝑛(𝑛) ∈ ({0, 1}∗)∗;43

• If the previous step halts and 𝜑𝑛(𝑛)↓ ∈ {0, 1}∗, compute 𝐹(𝜑𝑛(𝑛));
• Compute and return 𝜑𝐹(𝜑𝑛(𝑛))(𝐼

′) ∈ ({0, 1}∗)∗.
Applying the 𝑆𝑚

𝑛 theorem, there exists some computable total function
𝑠∶ ({0, 1}∗)2 → {0, 1}∗ that, in particular, verifies 𝜑𝑏(𝑛 ∶ 𝐼) = 𝜑𝑠(𝑏,𝑛)(𝐼) for
word 𝑛 ∈ {0, 1}∗ and input array 𝐼 ∈ ({0, 1}∗)∗.44 But since 𝑠 is a computable
function, there exists a code 𝑎 ∈ {0, 1}∗ such that 𝜑𝑎(𝑛) = 𝑠(𝑏, 𝑛) for every
𝑛 ∈ {0, 1}∗; and since 𝑠 is a total function, 𝜑𝑎 ∶ {0, 1}∗ → {0, 1}∗ must be
total too.
Then 𝑒 = 𝜑𝑎(𝑎) ∈ {0, 1}∗ is well-defined, and forms a valid fixpoint.

Indeed, for any 𝐼 ∈ ({0, 1}∗)∗, we have

𝜑𝑒(𝐼) = 𝜑𝑠(𝑏,𝑎)(𝐼) = 𝜑𝑏(𝑎 ∶ 𝐼) = 𝜑𝐹(𝜑𝑎(𝑎))(𝐼) = 𝜑𝐹(𝑒)(𝐼),

since 𝜑𝑎(𝑎)↓ ∈ {0, 1}∗ and that 𝐹 is total.

What is the time complexity of 𝑒? By the 𝑆𝑚
𝑛 theorem, the time complexity

of the code 𝑒 = 𝑠(𝑏, 𝑎) has a constant-time factor overhead on the time
complexity of 𝑏. Since the first two items of 𝑏 (computing the codes 𝑒 = 𝜑𝑎(𝑎)
and 𝑓(𝑒)) take time 𝑂(1), the time complexity of 𝑏 essentially depends on
the last step: computing 𝜑𝐹(𝑒)(𝐼[1∶]) for 𝐼 ∈ ({0, 1}∗)∗ the input of 𝑏, which
can be performed with constant-time factor overhead on the original time-
complexity of 𝐹(𝑒).

Remark. If 𝐹(𝑒) is a log-RAM program, then 𝑠(𝑏, 𝑎) = 𝑒 is also a log-RAM
program.

From the first recursion theorem, we can prove Kleene’s second recursion
theorem (a.k.a. fixpoint theorem) [Kle38]: there exists programs that can
access their own code45:

Proposition 4.30. For every computable 𝑓∶ ⊆ ({0, 1}∗)∗ ⇉ ({0, 1}∗)∗, there
exists a code 𝑒 ∈ {0, 1}∗ such that, for all input arrays 𝐼 ∈ ({0, 1}∗)∗:

𝜑𝑒(𝐼) = 𝑓(𝑒 ∶ 𝐼).

Furthermore, if 𝑓 has time complexity 𝑡(𝑠) on input arrays of bit size 𝑠, then 𝑒 has
time complexity 𝑂(𝑡(𝑠)).

Proof. Let 𝑒′ ∈ {0, 1}∗ be a code for 𝑓, and let 𝑠 ∈ ({0, 1}∗)2 → {0, 1}∗ be given
by the 𝑆𝑚

𝑛 theorem: for every code 𝑥 ∈ {0, 1}∗ and input array 𝐼 ∈ ({0, 1}∗)∗,
we have 𝜑𝑠(𝑒′,𝑥)(𝐼) = 𝜑𝑒′(𝑥 ∶ 𝐼) = 𝑓(𝑥 ∶ 𝐼).
Let 𝐹∶ {0, 1}∗ → {0, 1}∗ be given by 𝐹(𝑥) = 𝑠(𝑒′, 𝑥). By the first recursion

theorem, there exists some code 𝑒 ∈ {0, 1}∗ such that 𝜑𝐹(𝑒) = 𝜑𝑒 and such
that the program of code 𝑒 only has constant overhead on the time complex-
ity of 𝐹(𝑒) (thus, constant overhead on the time complexity of 𝑒′, which
computes 𝑓). Hence:

𝜑𝑒(𝐼) = 𝜑𝐹(𝑒)(𝐼) = 𝜑𝑠(𝑒′,𝑒)(𝐼) = 𝑓(𝑒 ∶ 𝐼).

Remark. If 𝑓(𝑒 ∶ 𝐼) is implemented by a log-RAM program, then 𝑒 is also a
log-RAM program.

Draft: June 5, 2025 at 14:45.

38 4 Computability

46 This proposition is definitely folk-
lore, whose first appearance seems to be
[Wie83].

4.3.5 Simulation by Turing machines

One may believe that non-deterministic log-RAM programs are inherently
faster than non-deterministic Turing machines, since they can address
memory cells in constant time without being constrained by the locality of
head movements. The following proposition

[Wie83] Wiedermann, “Deterministic
and Nondeterministic Simulation of the
RAM by the Turing Machine”.

46 disproves this intuition:

Proposition 4.31. There exists a non-deterministic Turing machine URAM with
finitely many tapes (the program tape, the memory tape, the input tape, the output
tape, and finitely many work tapes) such that, for any log-RAM code 𝑒 ∈ {0, 1}∗
and any input array 𝐼 ∈ {0, 1}∗, the valid runs of the machine URAM when given
𝑒 on its program tape and 𝐼 on its input tape are in bijection with the valid runs
of the RAM program 𝑒 on the input array 𝐼.
Furthermore, this bijection preserves the length of runs up to a polylogarithmic
factor.

Sketch of proof. The machine URAM can easily simulate all operations on
variables with polylogarithmic time overhead, since all operations of log-
RAMmachines operate on finitely many words of logarithmic sizes.
The only remaining part that we have to simulate are the memory accesses

of the RAMmachine: all operations involving the memory of the RAM will
be simulated by the Turing machine using non-deterministic guesses, and
these guesses will be checked afterwards. More precisely:

• When copying a value from a variable to a memory cell, the simulating
Turingmachine will write a record (MEMORY,WRITE,time,address,w)
on its memory tape, where time is the elapsed number of computation
steps, address is the address of the memory cell that is to be written,
and 𝑤 is the value of the variable that is to be copied;

• When reading a value from a memory cell to a variable, the simulating
Turing machine will write a record (MEMORY,READ,time,address,w)
on its memory tape, using the same notations.

At the end of the simulation (i.e. when the RAM program on the program
tape orders to halt the execution), the machine URAM sorts the guesses that
appear on its memory tape lexicographically by addresses and time, and
checks the consistence of its guesses in linear time. It halts in a valid state
if and only its guesses were correct and if RAM program did; otherwise, it
crashes and runs forever.
Sorting the memory tape at the end of the computation adds a logarithmic

factor to the time complexity, because sorting can be performed in quasi-
linear time on a multitape Turing machine; and checking the consistency of
the sorted tape can be performed in linear time.

Remark. As currently written, the logarithmic time overhead depends on the
program 𝑝, because the machine URAM spends a lot of time reading its program
tape by going back and forth. However, this dependency can be removed with same
method: we can make URAM guess the current instruction, record the instruction
counter and these guesses on a special tape, and at the end of the computations
sort and check whether theses guesses were correct.

Though we will not use Proposition 4.31 in this thesis, the idea of non-
deterministically guessing memory values, recording these guesses and and
sorting them later to check their consistency will be our main insight for
proving Theorem 11.8.

Draft: June 5, 2025 at 14:45.

47 See OEIS A007814.

Tools 5
This section introduces the family of Toeplitz subshifts, which often

appear in proofs that encode real numbers as densities, or embed
sequences of symbols in a shift-invariant object.

5.1 Toeplitz subshifts

5.1.1 The ruler sequence

Consider the word morphism 𝜏 ∶ ℕ∗ → ℕ∗ defined by 𝜏(𝑛) = 0 ⋅ (𝑛 + 1) for
every 𝑛 ∈ ℕ. Iterations from the word 0:

0
𝜏
−→ 01

𝜏
−→ 0102

𝜏
−→ 01020103

𝜏
−→ 0102010301020104…

define a unique infinite sequence T = 𝜏∞(0) ∈ ℕℕ that is often called the
ruler sequence47. We denote by T𝑛 ∈ ℕ the 𝑛th element of the sequence T. On
the infinite alphabet ℕ̄ = ℕ ∪ {∞} (the compactification of ℕ), we define
the closed and shift-invariant set

𝑋T = {𝑥 ∈ ℕℤ ∶ ∀𝑤 ⊑ 𝑥,𝑤 ⊑ T} ⊆ ℕ̄ℤ.

The closure in the formula above adds to𝑋T configurations that may contain
a single position with a∞ symbol. For a given configuration 𝑥 ∈ 𝑋T, and
a position 𝑖 ∈ ℤ, we call level of 𝑖 in 𝑥 the value 𝑥𝑖. In particular, it follows
from the definition that, for any configuration 𝑥 ∈ 𝑋T, positions of level
ℓ ∈ ℕ are 2ℓ+1-periodic in 𝑥.

Claim 5.1. Let 𝑡 ∈ ℕ̄⟦𝑛⟧ such that 𝑡 ⊑ T (i.e. 𝑡 ∈ L⟦𝑛⟧(𝑋T)). Then 𝑡 contains
at least one position of every level ℓ < ⌊log(𝑛 − 1)⌋, and at most two positions of
level ℓ ≥ ⌊log(𝑛 − 1)⌋.

Proof. Considering the sequence T, notice that consecutive positions of level
ℓ appear exactly at distance 2ℓ+1 from one another, and that consecutive
positions of level ≥ ℓ appear exactly at distance 2ℓ from one another.
Fix 𝑡 ∈ L⟦𝑛⟧(𝑋T).
• For any ℓ ∈ ℕ such that 2ℓ+1 + 1 ≤ |⟦𝑛⟧| = 𝑛, at least one position of
level ℓmust appear in 𝑤. Such levels verify in particular

ℓ ≤ log(𝑛 − 1) − 1;

• Reciprocally, consider ℓ ∈ ℕ such that 𝑡 contains three positions of
level ≥ ℓ: then 2 ⋅ 2ℓ + 1 ≤ |⟦𝑛⟧| = 𝑛 and

ℓ ≤ log 𝑛 − 1
2

≤ log(𝑛 − 1) − 1.

5.1.2 Toeplitzification

For any alphabetA and sequence 𝑢 = (𝑢𝑛)𝑛∈ℕ ∈ Aℕ, define its Toeplitzifica-
tion T(𝑢) ∈ Aℕ as:

T(𝑢) ∶ 𝑛 ∈ ℕ ↦ 𝑢T𝑛 ∈ A.

Draft: June 5, 2025 at 14:45. 39

https://oeis.org/A007814

40 5 Tools

48 See OEIS A096268.

49 In base 2: 𝛼 = (.101000…)2.
50 Recall that, for 𝑎 ∈ A, |𝑤|𝑎 is the num-
ber of occurences of 𝑎 in𝑤 ∈ A∗.

For example, the sequence defined by 𝑢𝑛 = 0 if 𝑛 is even, and 𝑢𝑛 = 1 if 𝑛 is
odd, transforms into the period-doubling sequence48 T(𝑢) = 01000101010… .
Similarly, given a sequence 𝑢 ∈ Aℕ, the subshift𝑋T(𝑢) is defined as:

𝑋T(𝑢) = {𝑥 ∈ Aℤ ∶ ∃𝑡 ∈ 𝑋T, ∀𝑖 ∈ ℤ, 𝑡𝑖 ∈ ℕ ⟹ 𝑥𝑖 = 𝑢𝑡𝑖}.

In other words, configurations of 𝑋T(𝑢) are made of arbitrarily long se-
quences of T(𝑢), with the possible exception of at most one position of “infi-
nite level” that can contain any symbol ofA.

Claim 5.2. Let 𝑤 ∈ L⟦𝑛⟧(𝑋T(𝑢)) for 𝑢 = (01)∞ be a factor of the period-
doubling sequence. For any two Toeplitz structures 𝑡, 𝑡′ ∈ 𝑋T such that 𝑤𝑖 =
𝑡𝑖 mod 2 and 𝑤𝑖 = 𝑡′𝑖 mod 2 for 𝑖 ∈ ⟦𝑛⟧ with 𝑡𝑖, 𝑡′𝑖 ≠ ∞, we have:

∀𝑖 ∈ ℤ, 𝑡𝑖 ≠ ∞ and 𝑡𝑖 ≤ (log(𝑛 − 1) − 2) ⟹ 𝑡𝑖 = 𝑡′𝑖.

Proof. Let us denote 𝑇 (𝑤) the set of Toeplitz structures compatible with 𝑤,
i.e. 𝑇 (𝑤) = {𝑡 ∈ 𝑋T ∶ ∀𝑖 ∈ ⟦𝑛⟧, 𝑡𝑖 ≠ ∞ ⟹ 𝑤𝑖 = 𝑡𝑖 mod 2}. We prove by
induction on ℓ that, for every ℓ ≤ (log𝑛 − 2), there exists 𝑖ℓ ∈ ℕ such that
for any 𝑡 ∈ 𝑇 (𝑤), 𝑡𝑖 ≥ ℓ if and only if 𝑖 ∈ 𝑖ℓ + 2ℓℤ:

• Base case: ℓ = 0. The integer 𝑖0 = 0 verifies the property above.
• Induction: ℓ → ℓ + 1. Assume that there exists some 𝑖ℓ such that
positions of level ≥ ℓ in any 𝑡 ∈ 𝑇 (𝑤) occur at positions (𝑖ℓ + 2ℓℤ).
For any 𝑡 ∈ 𝑋T such that positions of level ≥ ℓ appear at positions
(𝑖ℓ + 2ℓℤ), two cases occur: either the positions of level ℓ exactly span
(𝑖ℓ + 2ℓ+1ℤ) (and the positions of level ≥ ℓ + 1 are (𝑖ℓ + 2ℓ + 2ℓ+1ℤ)),
or the positions of level ℓ exactly span (𝑖ℓ + 2ℓ + 2ℓ+1ℤ) (in which case,
the positions of level ≥ ℓ + 1 are (𝑖ℓ + 2ℓ+1ℤ)).
Furthermore, if 𝑡 ∈ 𝑇 (𝑤), the first cases implies that 𝑤|(𝑖ℓ+2ℓ+1ℤ) is con-
stant and equals (ℓ mod 0),which the second implies that𝑤|(𝑖ℓ+2ℓ+2ℓ+1ℤ)
is constant and equals (ℓ mod 0). Assuming that ℓ+1 ≤ log(𝑛−1)−2,
only one of the aforementioned cases can occur among the Toeplitz
structures of 𝑇 (𝑤). Indeed, a position of level ℓ + 1 must occur in
𝑡|⟦𝑛⟧ for any 𝑡 ∈ T by Claim 5.1: thus, there must exists some index
𝑖 ∈ ⟦𝑛⟧ ∩ (𝑖ℓ + 2ℓℤ) such that 𝑤𝑖 = (ℓ + 1 mod 2) ≠ (ℓ mod 2).

In particular, when considering a real number 𝛼 ∈ [0, 1), one can associate
to 𝛼 the Toeplitzification T(𝛼) = T((𝛼𝑛)𝑛∈ℕ) ∈ {0, 1}ℕ, where 𝛼𝑛 is the
𝑛th digit of the proper binary expansion of 𝛼. For example, for 𝛼 = 5/8, we
obtain49: T(𝛼) = 10111010111010… . Considering the density50 of symbols
1 in patterns of T(𝛼), one proves:

Claim 5.3. For any 𝛼 ∈ [0, 1), consider the associated Toeplitz sequence T(𝛼) ∈
{0, 1}ℕ. Then for any 𝑤 ⊑ T(𝛼), we have:

|𝑤|1 = 𝛼 ⋅ |𝑤| + 𝑂(1).

Proof. Since positions of level ℓ are 2ℓ-periodic in T(𝛼), we deduce that any
subpattern 𝑤 ⊑ T(𝛼) of length 𝑛 ∈ ℕmust cover at least ⌊𝑛/2⌋ positions of
level 0, ⌊𝑛/4⌋ positions of level 1…; and at most ⌈𝑛/2⌉ positions of level 2,
⌈𝑛/4⌉ positions of level 3…. In particular, denoting (𝛼𝑛)𝑛∈ℕ the proper binary

Draft: June 5, 2025 at 14:45.

https://oeis.org/A096268

5.1 Toeplitz subshifts 41

51 Positions of level ℓ = 0 cover one symbol
out of two in𝑤, and positions of level ℓ > 0
cover the remaining positions. Positions
of level ℓ = 1 cover half of these remaining
positions, etc…

expansion of 𝛼, we obtain:

|𝑤|1 ≥
⌊log(𝑛−1)−1⌋

∑
𝑖=0

⌊ 𝑛
2𝑖+1 ⌋ ⋅ 𝛼𝑖 ≥

⌊log(𝑛−1)−1⌋

∑
𝑖=0

(𝑛
2𝑖+1 − 1) ⋅ 𝛼𝑖

≥
⌊log(𝑛−1)−1⌋

∑
𝑖=1

𝑛
2𝑖

⋅ 𝛼𝑖 +𝑂(1)

≥ 𝑛 ⋅ (𝛼 −
+∞

∑
𝑖=⌊log(𝑛−1)⌋

1
2𝑖
)+𝑂(1)

≥ 𝑛 ⋅ (𝛼 − 𝑂(1) ⋅ 1
2log𝑛

)+𝑂(1)

≥ 𝑛 ⋅ 𝛼 + 𝑂(1).

And similarly, using Claim 5.1:

|𝑤|1 ≤
⌊log(𝑛−1)−1⌋

∑
𝑖=1

⌈ 𝑛
2𝑖
⌉ ⋅ 𝛼𝑖 + 2 ≤ 𝑛 ⋅ 𝛼 + 𝑂(1).

5.1.3 Toeplitzification

Instead of considering sequences of 𝑢 ∈ Aℕ, we also generalize to sets of
sequences 𝑈 ⊆ Aℕ and define:

T(𝑈) = {T(𝑢) ∶ 𝑢 ∈ 𝑈}.

Proposition 5.4. If 𝑈 ⊆ Aℕ is an effectively closed subset ofAℕ, then T(𝑈) is
also an effectively closed subset ofAℕ.

Proof. Indeed, let 𝑥 ∈ Aℕ. By definition, there exists a unique 𝑠 ∈ Aℕ such
that 𝑥𝑖 = 𝑠T𝑖 for every 𝑖 ∈ ℕ: in particular, when given 𝑥 ∈ Aℕ, the sequence
𝑠 ∈ Aℕ is computable, and 𝑥 belongs in T(𝑈) if and only if 𝑠 belongs in 𝑈.
Enumerating the prefixes 𝑠|⟦𝑛⟧ for 𝑛 ∈ ℕ, check in parallel the following
condition: if there exists one such prefix 𝑠|⟦𝑛⟧ such that [𝑠|⟦𝑛⟧]0∩𝑈 = ∅, then
reject 𝑥.
This procedure terminates in finite time and rejects 𝑥 ∈ Aℕ whenever

𝑥 ∉ T(𝑈). This concludes the proof.

The subshift𝑋T(𝑈) is similarly defined:

𝑋T(𝑈) = ⋃
𝑢∈𝑈

𝑋T(𝑢).

Claim 5.5. For any alphabetA, |L⟦𝑛⟧(𝑋T(Aℕ))| ≤ (2|A|)log𝑛+𝑂(1).

Proof. A pattern 𝑤 ∈ L⟦𝑛⟧(𝑋T(Aℕ)) is entirely determined by its level struc-
ture and the symbol appearing at each level. Since at most log𝑛 + 2 distinct
Toeplitz levels can appear in such a pattern 𝑤, and that the position of each
level is determined by its parity among positions of level ℓ − 1,51, the upper
bound follows.

Proposition 5.6. If 𝑈 ⊆ Aℕ is an effectively closed subset ofAℕ, then𝑋T(𝑈) is
an effective subshift.

Proof. Let us begin by defining another subshift: for 𝑢 ∈ Aℕ, define

𝑋′
T(𝑢) = {𝑥 ∈ (A× {0, 1})ℤ ∶ ∃𝑡 ∈ 𝑋T,

∀𝑖 ∈ ℤ, 𝑡𝑖 ∈ ℕ ⟹ 𝑥𝑖 = (𝑢𝑡𝑖 , 𝑡𝑖 mod 2)};

Draft: June 5, 2025 at 14:45.

42 5 Tools

52 Notice that it does not hold for𝑋T(Aℕ).
Indeed, when considering the configura-
tion 𝑥𝑖 = 𝑖 mod 2,𝑥 can be obtained from
either 𝑢 = 0111… or 𝑢 = 1000… .

and for 𝑈 ⊆ Aℕ:

𝑋′
T(𝑈) = ⋃

𝑢∈𝑈
𝑋′

T(𝑢).

Since for any 𝑈 ⊆ Aℕ, the subshift𝑋T(𝑈) is a factor of𝑋′
T(𝑈) by the natural

projection 𝜋∶ A × {0, 1} → A, by Proposition 3.41 we can prove Proposi-
tion 5.6 on𝑋′

T(𝑈) instead.
This alternative version of Toeplitzification verifies the following prop-

erty52 by Claim 5.2: for any configuration 𝑥 ∈ 𝑋′
T(Aℕ), let 𝑢 ∈ Aℕ be a

sequence and 𝑤 ∈ L⟦𝑛⟧(𝑋′
T(𝑢)) be a pattern such that 𝑤 ⊑ 𝑥; then for any

sequence 𝑣 ∈ Aℕ such that 𝑥 ∈ 𝑋′
T(𝑣), we have 𝑢|⟦⌊log𝑛−2⌋⟧ = 𝑣|⟦⌊log𝑛−2⌋⟧.

Let us now proceed with the proof. Fix an effectively closed set 𝑈 ⊆ Aℕ.
Let us first notice that:

𝑋′
T(𝑈) = ⋃

𝑢∈𝑈
𝑋T(𝑢).

The inclusion ⊇ holds by definition of𝑋′
T(𝑈). For the converse inclusion ⊆,

consider 𝑥 ∈ 𝑋′
T(𝑈) and a sequence 𝑢 ∈ Aℕ such that 𝑥 ∈ 𝑋′

T(𝑢). By definition
of𝑋′

T(𝑈), there exists sequences 𝑢(𝑛) ∈ 𝑈 ⊆ Aℕ and configurations 𝑥(𝑛) ∈ Aℤ

such that 𝑥(𝑛) ∈ 𝑋′
T(𝑢(𝑛)) and 𝑥 = lim

𝑛→+∞
𝑥(𝑛). Because the 𝑥(𝑛)’s converge

towards 𝑥, by Claim 5.2 we must have 𝑢 = lim
𝑛→+∞

𝑢(𝑛); and since 𝑈 is closed,
we conclude that 𝑢 ∈ 𝑈.
To conclude, we prove that𝑋′

T(𝑈) is effective. Since 𝑈 is effectively closed,
the set of words {𝑤 ∈ A∗ ∶ [𝑤]0 ∩ 𝑈 = ∅} is computably enumerable. From
it, define the following a set of forbidden patterns F: denoting by T(𝑣)′ ∈
(A× {0, 1})ℕ the word defined as T(𝑣)′𝑖 = (𝑣T𝑖 ,T𝑖 mod 2) for 𝑣 ∈ Aℕ, define

F = ⋃
𝑛∈ℕ

{T(𝑣)′|⟦2𝑛+2+1⟧ ∶ 𝑣 ∈ Aℕ, [𝑣|⟦𝑛⟧]0 ∩ 𝑈 = ∅}.

We claim that F realizes𝑋T(𝑈):
⟹ Fix 𝑥 ∈ 𝑋′

T(𝑈): there exists 𝑡 ∈ 𝑋T and a sequence 𝑢 ∈ 𝑈 such that
𝑥𝑖 = (𝑢𝑡𝑖 , 𝑡𝑖 mod 2) for every position 𝑖 ∈ ℤ such that 𝑡𝑖 ≠ ∞. For any
forbidden pattern 𝑓 ∈ F, let 𝑛 ∈ ℕ be such that 𝑓 ∈ A⟦2𝑛+2+1⟧, and let
us prove that 𝑓 cannot appear in 𝑥. By definition of 𝑓, there exists a
sequence 𝑣 ∈ Aℕ such that 𝑓 = T(𝑣)′|⟦2𝑛+2+1⟧ and [𝑣|⟦𝑛⟧]0 ∩ 𝑈 = ∅. By
contradiction: if we had 𝑓 ⊑ 𝑥, then for any 𝑣′ such that 𝑥 ∈ 𝑋′

T(𝑣′) we
would have 𝑣′|⟦𝑛⟧ = 𝑣|⟦𝑛⟧ (Claim 5.2). In particular, we would have
𝑢 ∉ 𝑈: contradiction.

⟸ Let 𝑥 ∈ 𝑋T(Aℕ) ∖ 𝑋′
T(𝑈): there exists a sequence 𝑢 ∈ Aℕ ∖ 𝑈 such that

𝑥 ∈ 𝑋T(𝑢). Since Aℕ ∖ 𝑈 is open, there exists some 𝑛 ∈ ℕ such that
[𝑢|⟦𝑛⟧] ∩ 𝑈 = ∅.

As every factor of T(𝑢)′ occurs infinitely often in 𝑥 by definition of
𝑋T(𝑢), the pattern T(𝑢)′|⟦2𝑛+2+1⟧ ∈ F occurs in 𝑥: thus, 𝑥 ∉ 𝑋F.

Let us consider a particular case: for any real number 𝛼 ∈ [0, 1), denote
by 𝑈𝛼 = {𝑎 ∈ {0, 1}ℕ ∶ ∶ ∑+∞

𝑖=0 𝑎𝑖2−(𝑖+1) ≤ 𝛼} the set of binary expansions
of real numbers 𝑎 ≤ 𝛼. If 𝛼 ∈ Π0

1, then 𝑈𝛼 is an effectively closed subset of
{0, 1}ℕ, and the subshift𝑋T(𝑈𝛼) (or𝑋T(≤𝛼) for short) is effective.

Definition 5.7. For any 𝛼 ∈ [0, 1]∩Π0
1, the density subshift𝑋T(≤𝛼) ⊆ {0, 1}ℤ

is the effective subshift defined as:

𝑋T(≤𝛼) ={𝑥 ∈ {0, 1}ℤ ∶ ∃𝑡 ∈ 𝑋T, ∃𝑎 ∈ {0, 1}ℕ,
+∞

∑
𝑖=0

𝑎𝑖2−(𝑖+1) ≤ 𝛼 and ∀𝑖 ∈ ℤ, 𝑡𝑖 ∈ ℕ ⟹ 𝑥𝑖 = 𝑎𝑡𝑖}.

Draft: June 5, 2025 at 14:45.

CONTEXT: SOFICITY OF SUBSHIFTS

Draft: June 5, 2025 at 14:45. 43

Introduction 45

53 i.e. not by an automaton, but as an ex-
plicit set 𝐿 ⊆ A∗.

[RS59] Rabin and Scott, “Finite automata
and their decision problems”.

Introduction

Motivations As stated in the introduction, the main goal of this thesis is
to study the following problem:

When is a ℤ𝐝 subshift sofic?

To recognize where the difficulty lies when trying to determine the class of
a subshift, let us take a detour through the theory of formal languages.
Classes of languages of finite words (regular, context-free, computable)

are often defined computationally, i.e. by the various types of automata
that recognize them (respectively finite automata, pushdown automata,
Turing machines…). However, these definitions suffer from an unfortunate
drawback: given a language as a set of words53, it is very difficult to properly
determine the classes this language might belong to. Indeed, this requires
to either create an automaton that recognizes said language, which is often
done on a case-by-case basis; or prove that none exists, which is often done
by deriving a contradiction.
Subshifts suffer from the same issue: to decide the soficity of a given

subshift 𝑋 ⊆ Aℤ𝑑 , one needs to either find a local subshift that projects
onto𝑋; or prove that none exists. The former may be very natural in the case
of very “geometrical” subshifts, e.g. drawings of multidimensional grids,
drawings of independant rectangles/squares, etc…; but not so much for
“computational” subshifts, e.g. periodic lifts of arbitrary effective subshifts
(Proposition 3.44). The latter is often very difficult, since most arguments
of non-soficity rely on subshifts that have both high complexity (e.g. positive
entropy) and many symmetries (e.g. embed a mirror).

Summary In Chapters 6 and 7, we dress a (probably incomplete) state of
what is known about the class of sofic subshifts:

• Chapter 6 considers the case of ℤ subshifts, which is entirely solved:
there exists a characterization of ℤ sofic subshifts inspired by tools
from the formal language theory of finite words, namely the Myhill-
Nerode theorem [RS59].

• Chapter 7 considers the case of ℤ𝑑 sofic subshfits for 𝑑 ≥ 2. This
class of multidimensional ℤ𝑑 sofic subshifts turns out to be far more
expressive than its one-dimensional conterpart. We also look at the
currently known arguments of non-soficity.

Draft: June 5, 2025 at 14:45.

54 Restraining ourselves to proofs based
on automata, the pumping lemma can
sometimes be used to prove that a language
is not regular; but it famously fails to apply
to some non-regular languages.
[RS59] Rabin and Scott, “Finite automata
and their decision problems”.

55A language𝐿 ⊆ A∗ is local if there exists
sets of prefixes 𝑃 ⊆ A, suffixes 𝑆 ⊆ A
and forbidden 2-factors𝐹 ⊆ A2 such that
𝐿 = (𝑃A∗ ∩A∗𝑆) ∖ (A∗𝐹A∗).

Soficity of ℤ subshifts 6
This section considers the soficity of ℤ subshifts. Using the no-

tion of extender sets, imported from the context of formal languages,
we state the classical application of extender set in the context of
ℤ subshifts: the number of extender sets determines their soficity
(Proposition 6.5).

6.1 Syntactic monoid in formal languages

As mentioned in the introduction, sofic subshifts suffer the same drawbacks
as languages of finite words: deciding whether a given language 𝐿 ⊆ A∗ is
regular (resp. …) requires to guess a suitable automata that recognizes it; or
prove that non exists, which is always a difficult undertaking54.
However, in the case of formal languages of finite words, the introduction

of algebraic tools has been especially effective in solving this issue. The
syntactic monoid of a language𝐿 ⊆ A∗, often believed to have been introduced
by [RS59] (the authors credit unpublished work byMyhill), is a monoid that
is canonically induced by 𝐿. It relies on the notion of syntactic congruence,
which intuitively defines any two words 𝑢 and 𝑣 in A∗ to be equivalent if
every occurence of 𝑢 (as a factor) in the words of 𝐿 can be replaced by 𝑣:

Definition 6.1 (Syntactic congruence). Let 𝐿 ⊆ A∗ be a language. The
syntactic congruence induced by 𝐿 is the equivalence relation ≃𝐿 (or ≃ for
short) overA∗ defined by:

𝑢 ≃𝐿 𝑣 ⟺ (∀𝑥, 𝑦 ∈ A∗, 𝑥𝑢𝑦 ∈ 𝐿 ⟺ 𝑥𝑣𝑦 ∈ 𝐿).

The induced equivalences classes form the syntatic monoid:

Definition 6.2 (Syntactic monoid). For a language 𝐿 ⊆ A∗, the syntactic
monoid of 𝐿 is the monoidA∗/≃𝐿.

The syntactic monoid provides a canonical algebraic object associated to
a given language, which in particular does not depend on a given presen-
tation (i.e. automaton) of said language. Furthermore, in the context of
regular languages, Myhill-Nerode theorem answers our question: it states a
necessary and sufficient condition for a language to be regular.

Proposition 6.3 (Myhill-Nerode theorem [RS59]). A language 𝐿 ⊆ A∗ is
regular if and only if its syntactic monoid is finite.

In this section, we consider the generalization of syntactic congruence
from finite words to bi-infinite words: namely, we consider the notion of
extender sets. Similarly to its variations (predecessor and follower sets), it
entirely characterizes soficity among ℤ subshifts.
In other words, the soficity of ℤ subshifts is entirely resolved: to deter-

mine whether a ℤ subshift 𝑋 ⊆ Aℤ is sofic, one only needs to count its
extender sets (see Proposition 6.5). This should not come as a surprise:
similarly to regular languages, which are morphic images of the so-called
local languages55, ℤ sofic subshifts are morphic images of local subshifts.

Draft: June 5, 2025 at 14:45. 47

48 6 Soficity of ℤ subshifts

[KM13] Kass and Madden, “A sufficient
condition for non-soficness of higher-
dimensional subshifts”.
[Fre16b] French, “Follower and extender
sets in symbolic dynamics”.
56 Follower sets are a generalization of the
so-called residuals from languages of fi-
nite words. They are well-defined on ℤ
subshifts, not-so-much on ℤ𝑑 subshifts.
[LM95] Lind andMarcus,An introduction
to symbolic dynamics and coding.

57 It consists of configurations containing
at most a single yellow square over a
background.

58 If a configuration of 𝑋 contains two
symbols ∗ at distance, say, 𝑘 ∈ ℕ, then it
is actually 𝑘-periodic.

6.2 Definitions

The notion of extender sets has been introduced in [KM13], and studied
extensively in the context of ℤ subshifts in [Fre16b]. Yet, a very similar
notion of follower sets56 was already used to characterize soficity among ℤ
subshifts in [LM95, Chapter 3].

Given a subshift𝑋 ⊆ Aℤ, the extender set of a pattern 𝑤 ∈ A∗ is the set
of valid completions of 𝑤 into full configurations in𝑋:

Definition 6.4. Given a ℤ subshift 𝑋 ⊆ Aℤ and a pattern 𝑤 ∈ A∗, the
extender set of 𝑤 in𝑋 is defined by:

𝐸𝑋(𝑤) = {(𝑥, 𝑦) ∈ A−ℕ ×Aℕ ∶ 𝑥𝑤𝑦 ∈ 𝑋}.

Let us consider the extender sets of a few example subshifts:
• Extender sets of the full shift: let 𝑋 = Aℤ be the full shift on some
finite alphabetA. Since every configuration is allowed in the full shift,
there is only one extender set: indeed, for all patterns 𝑤 ∈ A∗, we
have:

𝐸𝑋(𝑤) = A−ℕ ×Aℕ.

• Extender sets of the sunny-side-up: let A = { , }, and denote by
𝑋 = {𝑥 ∈ Aℤ ∶ ∀𝑖, 𝑗 ∈ ℤ, 𝑥𝑖 = 𝑥𝑗 = ⟹ 𝑖 = 𝑗} the sunny-side-up
subshift57. There are two extender sets in𝑋: if there exists 𝑖 ∈ dom(𝑤)
such that 𝑤𝑖 = , then

𝐸𝑋(𝑤) = {(−ℕ, ℕ)};

and if 𝑤 = dom(𝑤) otherwise, we have:

𝐸𝑋(𝑤) ={(−ℕ, ℕ)} ∪ { }−ℕ × (∗ ℕ)} ∪ (−ℕ ∗) × { }ℕ.

• Extender sets of the mirrored counter: let A = {𝑎, 𝑏,@, 𝑐, 𝑑} and 𝑋
the closure of the configurations {𝑎−ℕ𝑏𝑎𝑛@𝑐𝑛𝑑𝑐ℕ ∶ 𝑛 ∈ ℕ}. There are
infinitely distinct extender sets for patterns of 𝑋: indeed, denoting
𝑤𝑘 = 𝑏𝑎𝑘@ ∈ A𝑘+2, we have

𝐸𝑋(𝑤𝑘) = {(𝑎−ℕ, 𝑐𝑘𝑑𝑐ℕ)}.

In particular, 𝐸𝑋(𝑤𝑘) = 𝐸𝑋(𝑤𝑘′) if and only if 𝑘 = 𝑘′.
• Extender sets of the non-mirrored counter: letA = {𝑎, 𝑏,@, 𝑐, 𝑑} and
𝑋 the closure of the configurations {𝑎−ℕ𝑏𝑎𝑛@𝑐𝑛′𝑑𝑐ℕ ∶ 𝑛 ≠ 𝑛′}. There
are infinitely many distinct extender sets for patterns of 𝑋: indeed,
denoting 𝑤𝑘 = 𝑏𝑎𝑘@ ∈ A𝑘+2, we have

𝐸𝑋(𝑤𝑘) = {(𝑎−ℕ, 𝑐𝑘′𝑑𝑐ℕ) ∶ 𝑘′ ≠ 𝑘}.

In particular, 𝐸𝑋(𝑤𝑘) = 𝐸𝑋(𝑤𝑘′) if and only if 𝑘 = 𝑘′.
• Extender sets and periodic configurations: let A = { , , ∗} and
𝑋 = {𝑥 ∈ Aℤ ∶ ∀𝑖, 𝑗 ∈ ℤ, 𝑥𝑖 = ∗ and 𝑥𝑗 = ∗ ⟹ 𝑥 is (𝑖 − 𝑗)-periodic}.58
For every 𝑛 ∈ ℕ, {𝐸𝑋(𝑤)∶ 𝑤 ∈ A𝑛} contains at least 2𝑛 extender sets.
Indeed, for any two distinctwords𝑤,𝑤′ ∈ { , }𝑛, the periodic config-
uration 𝑥 = ∞(𝑤∗)∞ is valid in𝑋 and verifies 𝑥|⟦𝑛⟧ = 𝑤; but 𝑤′ ⋉⟦𝑛⟧ 𝑥
is not valid in𝑋 because it contains several (in fact: infinitely many)
symbols ∗ but is aperiodic. Thus, 𝐸𝑋(𝑤) ≠ 𝐸𝑋(𝑤′).

Even though the definition is not strictly needed in this manuscript, one
could proceed as in languages of finite words and define the syntactic con-
gruence induced by a ℤ subshift 𝑋 ⊆ Aℤ as 𝑢 ≃𝑋 𝑣 if 𝐸𝑋(𝑢) = 𝐸𝑋(𝑣). The
syntactic monoidA∗/≃𝑋 is then directly in bijection with the extender sets
{𝐸𝑋(𝑤)∶ 𝑤 ∈ A∗} of𝑋.

Draft: June 5, 2025 at 14:45.

6.3 Extender sets and soficity of ℤ subshifts 49

59 For 𝑤 ∈ A∗, the follower set of 𝑤 is
𝐹𝑋(𝑤) = {𝑦 ∈ Aℕ ∶ ∃𝑥 ∈ A−ℕ, 𝑥𝑤𝑦 ∈ 𝑋}.
This naturally extends to infinite words
𝑙 ∈ A−ℕ with 𝐹𝑋(𝑙) = {𝑟 ∈ Aℕ ∶ 𝑙𝑟 ∈ 𝑋}.

[OP16] Ormes and Pavlov, “Extender sets
and multidimensional subshifts”.

6.3 Extender sets and soficity of ℤ subshifts

6.3.1 Characterization of soficity in terms of extender sets

As the syntacticmonoid can be used to prove that a language of finite words is
regular, one can use extender sets to characterize soficity among ℤ subshifts.
In fact, we understand the following characterization of sofic subshifts as a
rephrasing of Myhill-Nerode theorem:

Proposition 6.5. Let𝑋 ⊆ Aℤ be a ℤ subshift. The following are equivalent:

(i) 𝑋 is a sofic subshift.
(ii) {𝐸𝑋(𝑤)∶ 𝑤 ∈ A∗} is finite.
(iii) There exists𝑀 such that |{𝐸𝑋(𝑤)∶ 𝑤 ∈ A𝑛}| ≤ 𝑀 for any 𝑛 ∈ ℕ.
(iv) {𝐹𝑋(𝑙) ∶ 𝑙 ∈ A−ℕ} is finite.59
(v) {𝐹𝑋(𝑤)∶ 𝑤 ∈ A∗} is finite.
(vi) There exists𝑀 such that |{𝐹𝑋(𝑤)∶ 𝑤 ∈ A𝑛}| ≤ 𝑀 for any 𝑛 ∈ ℕ.

Proof. Wemostly follow the proof of [OP16, Lemma 3.4].
(𝑖) ⟹ (𝑖𝑖) Assume that𝑋 ⊆ Aℤ is sofic: by definition, there exists a local subshift

𝑋′ ⊆ Bℤ and a projection 𝜋 ∶ B → A such that 𝜋(𝑋′) = 𝑋. Since 𝑋′

is local, the extender set of any pattern 𝑤′ ∈ B𝑛 in 𝑋′ only depends
on its first and last symbols 𝑤′

0 and 𝑤′
𝑛−1. Thus, the extender set of

a pattern 𝑤 ∈ A𝑛 is determined by the first and last symbols of its
preimages: in particular, there are less than 2|B2| extender sets in𝑋.

(𝑖𝑖) ⟹ (𝑖𝑖𝑖) Tautologically, |{𝐸𝑋(𝑤)∶ 𝑤 ∈ A∗}| ≥ |{𝐸𝑋(𝑤)∶ 𝑤 ∈ A𝑛}|.
(𝑖𝑖𝑖) ⟹ (𝑖𝑣) By contraposition, assume that {𝐹𝑋(𝑙) ∶ 𝑙 ∈ A−ℕ} is infinite. Fix 𝑘 ∈ ℕ

and some semi-infinitewords 𝑙0,… , 𝑙𝑘 ∈ A−ℕ such that𝐹𝑋(𝑙𝑖) ≠ 𝐹𝑋(𝑙𝑗)
for 𝑖 ≠ 𝑗: by definition, for every pair (𝑖, 𝑗) such that 𝑖 ≠ 𝑗, there exists
𝑟𝑖,𝑗 ∈ Aℕ such that 𝑙𝑖𝑟𝑖,𝑗 ∈ 𝑋 and 𝑙𝑗𝑟𝑖,𝑗 ∉ 𝑋 or vice-versa.
Assume the former: then for all 𝑛 ∈ ℕ, we have 𝑟𝑖,𝑗 ∈ 𝐹𝑋(𝑙𝑖|[−𝑛..0]); but
by compactness, there exists some 𝑁𝑖,𝑗 such that for any 𝑛 ≥ 𝑁𝑖,𝑗, we
have 𝑟𝑖,𝑗 ∉ 𝐹𝑋(𝑙𝑗|[−𝑛..0]). If the latter held, then 𝑟𝑖,𝑗 ∈ 𝐹𝑋(𝑙𝑗|[−𝑛..0]); but
there exists 𝑁𝑖,𝑗 such that for 𝑛 ≥ 𝑁𝑖,𝑗, we have 𝑟𝑖,𝑗 ∉ 𝐹𝑋(𝑙𝑖|[−𝑛..0]).
By taking 𝑛 = max𝑁𝑖,𝑗, we obtain that the words 𝑙𝑖|[−𝑛..0] have distinct
extender sets, so that |{𝐸𝑋(𝑤) ∶ 𝑤 ∈ A𝑛+1}| ≥ 𝑘: since 𝑘 is arbitrary,
the sets {𝐸𝑋(𝑤) ∶ 𝑤 ∈ A𝑛} do not have bounded size as 𝑛 increases.

(𝑖𝑣) ⟹ (𝑖) Assume that 𝐹 = {𝐹𝑋(𝑙) ∶ 𝑙 ∈ A−ℕ and 𝐹𝑋(𝑤) ≠ ∅} is finite. Then
consider the SFT𝑋′ defined on the alphabet 𝐹 ×A whose forbidden
patterns are: {(𝐹𝑋(𝑙), 𝑎)(𝐹𝑋(𝑙′), 𝑏) ∈ (𝐹 ×A)2 ∶ 𝐹𝑋(𝑙′) ≠ 𝐹𝑋(𝑙𝑏)}. For
𝜋 ∶ 𝐹 ×A → A the natural projection, we claim that 𝜋(𝑋′) = 𝑋:

𝑋 ⊆ 𝜋(𝑋′): For 𝑥 ∈ 𝑋, consider the configuration 𝑥′ ∈ (𝐹 ×A)ℤ defined by
𝑥𝑖 = (𝐹𝑋(𝑥(−∞..𝑖]), 𝑥𝑖): it is admissible in𝑋′ by definition of𝑋′,
and verifies 𝜋(𝑥′) = 𝑥.

𝜋(𝑋′) ⊆ 𝑋: For 𝑥′ ∈ 𝑋′ and 𝑛 ∈ ℕ, denote 𝑥′
𝑖 = (𝑓𝑖, 𝑥𝑖) ∈ 𝐹 ×A and 𝑙 ∈ A−ℕ

a word such that 𝑓−𝑛−1 = 𝐹𝑋(𝑙). By definition of 𝑋′, we know
that 𝐹𝑋(𝑙𝑥−𝑛) = 𝑓−𝑛 is non-empty; and inductively, we obtain
that 𝐹𝑋(𝑙𝑥−𝑛 …𝑥𝑖) = 𝑓𝑖 is non-empty. In particular, 𝑙𝑥−𝑛 …𝑥𝑛
(and thus, 𝑥−𝑛 …𝑥𝑛) is locally admissible in 𝑋: by compactness,
the configuration (𝑥𝑖)𝑖∈ℤ belongs in𝑋.

Finally, the equivalence between items (𝑖𝑣), (𝑣) and (𝑣𝑖) follows from the
equalities:

𝐹𝑋(𝑤) = ⋃
𝑙∈A−ℕ

𝐹𝑋(𝑙𝑤) and 𝐹𝑋(𝑙) = ⋂
𝑛∈ℕ

𝐹𝑋(𝑙|[−𝑛..0]).

This concludes the proof.

Draft: June 5, 2025 at 14:45.

50 6 Soficity of ℤ subshifts

[Pyt02] Pythéas Fogg, Substitutions in dy-
namics, arithmetics and combinatorics.

[MH38] Morse and Hedlund, “Symbolic
dynamics”.

This result can be improved in the following sense: if 𝑋 is not sofic, then
|{𝐸𝑋(𝑤)∶ 𝑤 ∈ L⟦𝑛⟧(𝑋)}| cannot be less than 𝑛. These results are reminiscent
of the famous Morse-Hedlund theorem [MH38, Theorem 7.3], and of the
existence of Sturmian words:

[OP16] Ormes and Pavlov, “Extender sets
and multidimensional subshifts”. Proposition 6.6 ([OP16, Theorem 1.1]). Let𝑋 be a ℤ subshift. If there exists

𝑛 ∈ ℕ such that |{𝐸𝑋(𝑤)∶ 𝑤 ∈ L⟦𝑛⟧(𝑋)}| ≤ 𝑛, then𝑋 is sofic.

Proposition 6.7 ([OP16, Theorem 1.4]). There exists a non-sofic ℤ subshift
𝑋 such that |{𝐸𝑋(𝑤)∶ 𝑤 ∈ L⟦𝑛⟧(𝑋)}| = 𝑛 + 1 for all 𝑛 ∈ ℕ.

Proof. Consider 𝑋 ⊆ {0, 1}ℤ a Sturmian subshift on ℤ. Since Sturmian
subshifts have pattern complexity𝑁(𝑛) = 𝑛+1, we immediately obtain that
|{𝐸𝑋(𝑤)∶ 𝑤 ∈ L⟦𝑛⟧(𝑋)}| ≤ 𝑛 + 1. On the other hand, since 𝑋 is not sofic
[Pyt02, Corollary 6.1.11], we cannot have |{𝐸𝑋(𝑤)∶ 𝑤 ∈ L⟦𝑛⟧(𝑋)}| ≤ 𝑛.

6.3.2 Examples

Going back to the previous examples:
• The full shift𝑋 = Aℕ is sofic: it has a single extender set.
• The sunny-side-up 𝑋 = {𝑥 ∈ Aℤ ∶ ∀𝑖, 𝑗 ∈ ℤ, 𝑥𝑖 = 𝑥𝑗 = ⟹ 𝑖 = 𝑗}
is sofic: it has two extender sets (depending on whether the given
pattern contains the symbol or not).

• The mirrored counter (defined as the closure of the configurations
{𝑎−ℕ𝑏𝑎𝑛@𝑐𝑛𝑑𝑐ℕ ∶ 𝑛 ∈ ℕ}) is not sofic, since it has infinitely many
extender sets (the patterns 𝑤𝑘 = 𝑏𝑎𝑘@ yield distinct extender sets).

6.3.3 Final word

Among ℤ subshifts, soficity is entirely solved and determined by the number
of extender sets. Indeed, these results provide us with a systematic method
to determine the soficity of a ℤ subshift 𝑋: looking at the configurations
of𝑋, either {𝐸𝑋(𝑤)∶ 𝑤 ∈ A∗} is finite, which means that𝑋 is sofic; or the
sequence (|{𝐸𝑋(𝑤)∶ 𝑤 ∈ A𝑛}|)𝑛∈ℕ is not bounded and𝑋 is not sofic.

Draft: June 5, 2025 at 14:45.

60 Recall that 𝑤 ⋉𝐹 𝑥 is the pattern with
symbols from𝑤 on 𝐹, and 𝑥 outside of 𝐹.

61 This makes ℤ sofic subshifts unable to
simulate unbounded counters, for exam-
ple.

62 Substitution rules can actually be more
general, at the cost of dealing with gluing
rules for patterns of more arbitrary shapes
[JK12].
[Moz89] Mozes, “Tilings, substitution
systems and dynamical systems generated
by them”.
[AS14] Aubrun and Sablik, “Multidimen-
sional effective S-adic subshifts are sofic”.

Soficity of
multidimensional subshifts 7

As opposed to the one-dimensional case, ℤ𝑑 sofic subshifts have yet
to be characterized for 𝑑 ≥ 2. In this section,we provide some examples
illustrating the difficulty of determining whether a multidimensional
subshift is sofic. We also recall the classic “counting argument” of
non-soficity, and intuit that ⟦𝑛⟧𝑑 square patterns in ℤ𝑑 sofic subshifts
can only communicate information through their borders, which are
of size 𝑂(𝑛𝑑−1).

7.1 A rich class of subshifts

The rule of thumb that governs ℤ sofic subshifts is that a subshift𝑋 ⊆ Aℤ is
sofic if only a finite amount of information is enough to determine whether,
given a pattern𝑤 ∈ A⟦𝑛⟧ and a configuration 𝑥 ∈ Aℤ, we have60 𝑤⋉⟦𝑛⟧𝑥 ∈ 𝑋
(Proposition 6.5). The same intuition governs regular languages of finite
words, which are often described as the languages whose computations
involve finite amounts of memory. In other words, sofic subshifts on ℤ are
often thought as having “simple” configurations.
On ℤ𝑑, the soficity of multidimensional sofic subshifts has yet to be math-

ematically determined. The one-dimensional intuition still applies: as sofic
subshifts are projections of local subshifts, the compatibility of a partial
configurations and of 𝑑-dimensional square patterns of domain ⟦𝑛⟧𝑑 is con-
strained by their borders, which are of size 𝑂(𝑛𝑑−1).
However, if 𝑂(𝑛𝑑−1) is finite when 𝑑 = 1, and that having finite memory

is a well-understood computational setting61, the possibilities yielded by
having communication 𝑂(𝑛𝑑−1) in dimensions 𝑑 ≥ 2 are harder to grasp. In
fact, many ℤ𝑑 effective subshifts with complicated structures and compu-
tationally complex configurations have surprisingly turned out to be sofic,
including for example:

• Substitution-based subshifts are a class of subshifts defined by an
iterated substitution rule, which maps letters of the alphabet to, say,
hyperrectangular finite patches

[JK12] Jolivet and Kari, “Consistency of
multidimensional combinatorial substitu-
tions”.

62.Many substitution-based tilings are
actually sofic in the multidimensional setting by the famous results of
[Moz89]. See [AS14] for a generalization to S-adic systems.

The substitution 𝔰 ∶ ↦ .

Figure 7.1: A few iterations of a 2-dimensional substitution.

Draft: June 5, 2025 at 14:45. 51

52 7 Soficity of multidimensional subshifts

[Cas10] Cassaigne,Odd shift.

[Hoc09] Hochman, “On the dynamics
and recursive properties of multidimen-
sional symbolic systems”.
[AS13] Aubrun and Sablik, “Simulation
of effective subshifts by two-dimensional
subshifts of finite type”.
[DRS10] Durand, Romashchenko, and
Shen, “Effective closed subshifts in 1D can
be implemented in 2D”.
[Wes17] Westrick, “Seas of squares with
sizes from aΠ0

1 set”.

[Des21] Destombes, “Algorithmic com-
plexity and soficness of shifts in dimen-
sion two”.

• The even shift and the odd shift are the subshifts of { , }ℤ2 such
that every finite -connected component has respectively even and
odd cardinality. The even shift (folklore) and the odd shift ([Cas10,
unpublished]) are both sofic.

• All periodic lifts of effective subshifts (see Proposition 3.44, originally
initiated in [Hoc09] and improved in [AS13; DRS10]).

• The square shift is the subshift 𝑋𝑠 ⊆ { , }ℤ2 such that every -
connected component is a square. Many subshifts of𝑋𝑠 have actually
turned out to be sofic, for example those whose square sizes are re-
stricted to prime numbers, or even arbitrary Π0

1 subsets of ℕ [Wes17].

Figure 7.2: A “sea of squares” configuration.

• The 𝛼-density shift is the subshift𝑋𝛼 ⊆ { , }ℤ2 such that the number
of symbols in any 𝑛×𝑛 pattern is 𝑂(𝑛𝛼). If 𝛼 < 1 is any rational (or
even Π1-computable) real number, then𝑋𝛼 is a sofic subshift [Des21,
Theorem 4].

These examples illustrate that multidimensional sofic subshifts can en-
force very complex structures in their configurations, both geometrically
– by restricting their configurations to complex substitutive shapes – and
computationally – by computing arbitrary Π0

1 subsets of ℕ –, thus painting a
very different behavior from their one-dimensional counterparts.

7.2 Proving soficity

Howcanwe prove the soficity of amultidimensionalℤ𝑑 subshift? The answer
is, unfortunately, that no general method exists, and that reasonnings must
be done on a case by case basis. Yet, some ideas recurringly appear in the
litteratures, and the tools of the trade have considerably expanded over the
last few decades to prove the soficity of increasingly complex subshifts. We
mention here a few of these common methods used to build a local cover for
a given set of configurations.

Geometry Some subshifts, whose definitions have a geometrical flavor,
are often proved sofic by drawing construction lines. These include, for
example, drawings of rectangles, squares, regular grids…

Figure 7.3: A grid configuration (on the left), and a local cover (on the
right). In the cover, -diagonals between crosses make the grid
regular.

Draft: June 5, 2025 at 14:45.

7.3 Disproving soficity 53

Figure 7.4: One and two-dimensional
Toeplitz structures.

[Moz89] Mozes, “Tilings, substitution
systems and dynamical systems generated
by them”.

0 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 1 0 0

0 1 1 1 0 0

0 1 1 1 0 0

1 1 1 1 0 0

0 1 1 1 0 0

𝑞0

𝑞1

𝑞2

𝑞2

𝑞2

𝑞0

𝑞1

𝑞1

𝑞1

Figure 7.5: Drawing space-time diagrams
of Turing machines in tilings.
63 This method remains the most classi-
cal proof of undecidability for the Domino
problem.
[Rob71] Robinson, “Undecidability and
nonperiodicity for tilings of the plane”.
[DRS12] Durand, Romashchenko, and
Shen, “Fixed-point tile sets and their ap-
plications”.

[OP16] Ormes and Pavlov, “Extender sets
and multidimensional subshifts”.

For more involved geometrical constructions, Mozes’ theorem [Moz89]
shows that substitutive subshifts are sofic. These include, for example,
Toeplitz-like structures and their generalization to a multidimensional set-
ting; and other fractal-like systems.

Computations Subshifts whose definitions are more computationally fla-
vored (counting the number of occurences of a given pattern, restrictions
on distances between said occurences, or embedding arbitrary computations
to decide a set of integers𝑋 ⊆ ℕ) are trickier.
The simplest method of embedding arbitrary Turing machine computa-

tions consists in drawing the space-time diagram of the associated machine
on ℤ2, since these are defined by local constraints. However, this method
generates a lot of “meaningless” configurations (configurations that do
not contain any computation, computations without any Turing machine
head…) and does not behave well with compactness; thus, embeddings of
Turing machine computations are usually implemented using a Robinson-
like structure63 [Rob71].

Figure 7.6: Nested squares as obtained by Robinson tilings: as their sizes
increase, squares embed more computation steps.

More recently, the so-called fixpoint construction has been applied to
sofically realize a large variety of constructions [DRS12]. While some sub-
shifts have been proved sofic by building additional layers upon the original
construction (e.g. the seas of square shifts from [Wes17], see Theorem 14.2),
Proposition 3.44 is today one of the easiest ways to prove some subshift’s
soficity: since lifts of effective subshifts are sofic, it is possible to sofically
realize some ℤ𝑑 subshifts by building an effective ℤ𝑑−1 subshift whose pe-
riodic lift can be used, and draw upon this periodic lift some additional
construction lines/geometrical gadgets.

Sufficient conditions for soficity Unfortunately, very few sufficient con-
ditions for multidimensional soficity have ever been found: we should men-
tion [OP16, Theorem 1.1], which is a characterization in dimension 𝑑 = 1
but becomes weaker as the dimension increases.
All in all, proving the soficity of multidimensional subshifts often relies

on the author’s intuition and some folklore cookbook recipes rather than
systematic theorems.

7.3 Disproving soficity

The converse task – namely, disproving the soficity of a given multidimen-
sional subshift – is no trivial task either. The non-soficity of some example

Draft: June 5, 2025 at 14:45.

54 7 Soficity of multidimensional subshifts

[Pav13] Pavlov, “A class of nonsofic mul-
tidimensional shift spaces”.
[KM13] Kass and Madden, “A sufficient
condition for non-soficness of higher-
dimensional subshifts”.
[DR22] Destombes and Romashchenko,
“Resource-bounded Kolmogorov complex-
ity provides an obstacle to soficness ofmul-
tidimensional shifts”.
[Wes17] Westrick, “Seas of squares with
sizes from aΠ0

1 set”.

subshifts, the most famous being probably the so-called “mirror subshift”,
has been folklore knowledge and widely known within the community. The
argument, which we describe below, consists in enforcing the symmetry of
two half planes on ℤ2 within the configurations of the subshift: this requires
to remember 𝑂(𝑛2) bits of information per pattern of domain ⟦𝑛⟧2, which
cannot be enforced sofically.
A few sufficient condition for multidimensional non-soficity have been

formalized in the litterature, including [Pav13; KM13; DR22]. As noted in
[Wes17], themain intuition that governs allmultidimensional sofic subshifts
is about the information that can be contained within patterns: “all examples
known to the author of effectively closed shifts which are not sofic were obtained
by in some sense allowing elements to pack too much important information into
a small area”.
In this section, we briefly illustrate this intuition of “packing too much

important information” with the example of the mirror subshift.

7.3.1 Packing too much information and the counting
argument

Themost classical example of aℤ2 effective but non-sofic subshift is probably
the mirror subshift, as its non-soficity is quite elementary to prove.

The case of the mirror subshift

Let𝑋mirror ⊆ { , , }ℤ2 be the ℤ2 subshift defined as follows:

𝑋mirror = { , }ℤ2∪ ⋃
𝑗0∈ℤ

{𝑥 ∈ { , , }ℤ2 ∶ ∀𝑖, 𝑗 ∈ ℤ, 𝑥𝑖,𝑗 = ⟺ 𝑗 = 𝑗0

and ∀𝑖, 𝑗′ ∈ ℤ, 𝑥𝑖,𝑗0+𝑗′ = 𝑥𝑖,𝑗0−𝑗′}

Figure 7.7: A configuration of the mirror subshift.

The subshift𝑋mirror is obviously effective, by simply forbidding the pat-
terns containing a symbol that do not respect the symmetry condition.
However, it is also famously non-sofic:

Proposition 7.1. The ℤ2 mirror shift is not sofic.

To prove the non-soficity of the ℤ2 subshift 𝑋mirror, or of any subshift
𝑌 ⊆ Aℤ𝑑 , one needs to prove that there can be no SFT cover for it. Up to
my knowledge, most arguments of non-soficity revolve around the same
counting argument which goes as follows:

Proof. By contradiction, assume that 𝑋mirror is a ℤ2 sofic subshift. There
would exist a local subshift 𝑋′ ⊆ Aℤ2 and a projection 𝜋 ∶ A → { , , }
such that 𝜋(𝑋′) = 𝑋mirror.

Draft: June 5, 2025 at 14:45.

7.3 Disproving soficity 55

64 From formal language theory.
65 From communication complexity

66 The surface entropy of a given subshift
𝑋 ⊆ Aℤ𝑑 is defined as:

ℎ𝑑−1(𝑋) = lim sup
𝑛→+∞

log |𝑁𝑋(⟦𝑛⟧𝑑)|
𝑛𝑑−1 .

Let us consider the set of configurations 𝐶 ⊆ 𝑋mirror having the mirror
line just before the origin, i.e. 𝐶 = {𝑥 ∈ 𝑋mirror ∶ 𝑥|ℤ×{−1} = ℤ×{−1}}.
For any 𝑛 ∈ ℕ, notice that the number of valid patterns of 𝜕(⟦𝑛⟧2) in

the local subshift 𝑋′ is bounded by |A|4𝑛. However, let us also notice that
all 2𝑛2 patterns of { , }⟦𝑛⟧2 occur as 𝑥|⟦𝑛⟧2 for some 𝑥 ∈ 𝐶. Applying the
socket-drawer principle, there exists two distinct patterns 𝑢, 𝑣 ∈ { , }⟦𝑛⟧2

and two configurations 𝑥′, 𝑦′ ∈ 𝑋′ such that
• 𝜋(𝑥′)|⟦𝑛⟧2 = 𝑢 and 𝜋(𝑦′)|⟦𝑛⟧2 = 𝑣 (𝑥′ and 𝑦′ respectively project on ⟦𝑛⟧2

to 𝑢 and 𝑣);
• 𝑥′|𝜕(⟦𝑛⟧2) = 𝑦′|𝜕(⟦𝑛⟧2) (𝑥′ and 𝑦′ are equal on the border 𝜕(⟦𝑛⟧2)).

Since𝑋′ is a local cover, we can exchange the patterns of ⟦𝑛⟧2 in 𝑥′ and 𝑦′
to obtain that the configuration 𝑧′ = 𝑦′ ⋉⟦𝑛⟧2 𝑥′ is a valid configuration of
𝑋′. This is a contradiction: we obtain a configuration 𝜋(𝑧′) ∈ 𝐶 such that
𝑢 ⋉⟦𝑛⟧2 𝜋(𝑧′) ∈ 𝑋mirror and 𝑣 ⋉⟦𝑛⟧2 𝜋(𝑧′) ∈ 𝑋mirror, breaking the symmetry
condition because 𝑢 ≠ 𝑣.

𝑥′ ∈ 𝑋′

𝜋

𝑢

𝜋(𝑥′) ∈ 𝑋mirror

𝑦′ ∈ 𝑋′

𝜋

𝑣

𝜋(𝑦′) ∈ 𝑋mirror

𝑧′ ∈ 𝑋′

𝜋

𝑣

𝜋(𝑧′) ∉ 𝑋mirror

Figure 7.8: Configurations 𝑥′, 𝑦′, 𝑧′ ∈ 𝑋′ and their projections.

Analysis of the counting argument

This counting argument is, in fact, a fooling set64/fooling pair65 argument. It
exhibits an unbounded family of pairs of ⟦𝑛⟧2 patterns (𝑢𝑖, 𝑣𝑖)𝑖∈𝐼 such that
the pair (𝑢𝑖, 𝑣𝑗) is valid if and only if 𝑖 = 𝑗. In fact, a subshift that admits too
many fooling pairs like the mirror subshift cannot be sofic.
Unfortunately, this argument is very restricted in its applications:
• The subshift 𝑌 ⊆ Aℤ𝑑 whose soficness is supposed to be disproved
needs to have high pattern complexity, such as having infinite surface
entropy66. This limits the argument to high complexity subshifts, even
thoguh – as noted in [DR22] – it is instructive to realize that even
some non-effective subshifts can admit very low pattern complexity.

• The second limitation comes from fooling pair arguments, as these
arguments only apply if swapping patterns inside a configuration do
introduce an error in the tiling. Admitting fooling pairs seems closely
related to admitting increasing sequences of extender sets [KM13], but
there exists subshifts that do not verify these conditions: for example,
Question 15.26 describes a subshift in which this second requirement
fails, as any pattern in said subshift is compatible with all partial
configurations except one.

Despite these weaknesses, the “mirror subshift” example is a very good
illustration of how quantifying the amount of information that appears
within patterns of a subshift can prove their non-soficity: if said amount of
information is too high, then a subshift cannot be sofic.

Draft: June 5, 2025 at 14:45.

56 7 Soficity of multidimensional subshifts

[DR22] Destombes and Romashchenko,
“Resource-bounded Kolmogorov complex-
ity provides an obstacle to soficness ofmul-
tidimensional shifts”.

7.3.2 Limits on ressources

We briefly mention another argument of non-soficity that, for one, does
not rely on such counting arguments, but on a bound on the computational
ressources on the patterns of domain ⟦𝑛⟧𝑑: [DR22, Corollary 1] provides
the first known example of an effective but non-sofic ℤ2 subshift with only
polynomial pattern complexity.
This example is not obtained by packing a lot of important information

within a pattern of limited size, but rather by packing information that
requires a lot of computational power to verify. More precisely, the au-
thors’ build a subshift whose patterns have low Kolmogorov complexity
(e.g. 𝑂(log𝑛) bits for patterns of size ⟦𝑛⟧2, hence the polynomial pattern
complexity), but high time-bounded Kolmogorov complexity (e.g. Ω(𝑛1.5)
for patterns of size ⟦𝑛⟧2, when given time limitations 𝑇 (𝑛) = 2𝑛3), which
prevents the subshift from being sofic.

7.3.3 Final word

When is a multidimensional subshift sofic? Answering this question is
surprisingly difficult, and only partial conditions are known at the moment,
all revolving around some kind of counting/information-theoretic argument.
In the case of themirror subshift, having to synchronize𝑂(𝑛2) cells colored

with either or on both sides of the mirror line would require to transmit
𝑂(𝑛2) bits of information accross borders of size 𝑂(𝑛), which is not possible
in a local (and thus, in a sofic) subshift.
However incomplete it is, this counting argument highlights the main

intuition that will guide us through the second part “Soficity and small
representations” of this thesis: the compability of square patterns of do-
main ⟦𝑛⟧𝑑 and of partial configurations is, in a 𝑑-dimensional sofic subshift,
constrained by the size of their border: thus, at most𝑂(𝑛𝑑−1) bits of commu-
nication can be exchanged. And, following the intuition of [DR22], these
communications must have limited computational power.

Draft: June 5, 2025 at 14:45.

MULTIDIMENSIONAL EXTENDER SETS

Draft: June 5, 2025 at 14:45. 57

Summary 59

[CPV25] Callard, Paviet Salomon, and
Vanier, “Computability of extender sets
in multidimensional subshifts”.

[KM13] Kass and Madden, “A sufficient
condition for non-soficness of higher-
dimensional subshifts”.

[FP19] French and Pavlov, “Follower, pre-
decessor, and extender entropies”.

[OP16] Ormes and Pavlov, “Extender sets
and multidimensional subshifts”.

Summary

This whole chapter is joint work with Léo Paviet Salomon and Pascal
Vanier [CPV25].

Motivations Motivated by the role they play in the soficity of ℤ subshifts,
we study in the first part of this thesis the generalization of extender sets to
higher-dimensional subshifts, as defined in [KM13]: informally, the exten-
der set of a pattern 𝑝 in a subshift𝑋 ⊆ Aℤ𝑑 is the set𝐸𝑋(𝑝) of configurations
with a 𝑝-shaped hole that correctly extend 𝑝 into valid configurations of𝑋.
Similarly to the case of ℤ subshifts, we are interested in the number of

extender sets {𝐸𝑋(𝑤)∶ 𝑤 ∈ A⟦𝑛1,…,𝑛𝑑⟧} through several questions: if𝑋 is an
SFT, a sofic or an effective subshifts, how many extender sets can there be?
From a computational point of view, how hard is it to count the number of
extender sets of a given subshift𝑋? Can dynamical restrictions (minimality,
mixingness…) change these numbers?
In particular,we are interested in extender entropies, which are a dynamical

invariant introduced in [FP19] as the asymptotic growth rate of the number
of extender sets.

Structure of the chapters This part is naturally divided in two chapters:
• Chapter 8 considers extender sets defined by multidimensional sub-
shifts. Defining multidimensional extender sets as in [OP16], we
adapt the extender entropies from [FP19] into the multidimensional
setting. We prove some elementary properties on extender sets and
extender entropies, and look at their (un)computability.

• Chapter 9 characterizes the set of values achieved by well-known
classes of subshifts, both generically and under some dynamical/com-
putational restrictions.

Summary of results We prove that there exists a clear distinction between
the extender sets of ℤ and ℤ𝑑 subshifts for 𝑑 ≥ 2: while counting the number
of extender sets entirely determines the soficity of ℤ subshifts, in higher
dimension sofic and effective subshifts can have arbitrarily high number of
extender sets.
In Theorem 9.13 and Theorem 9.2, we characterize extender entropies

of ℤ𝑑 sofic and effective subshifts as the non-negative Π3-computable real
numbers of the arithmetical hierarchy. In particular, they span a dense subset
of ℝ+ (so that the number of extender sets can grow arbitrarily fast among
sofic ℤ𝑑 subshifts if 𝑑 ≥ 2). We also consider the behaviors of extender sets
and extender entropies under various computational (Theorem 9.20) and
dynamical (Proposition 9.25 and Theorem 9.28) restrictions.
The picture of multidimensional extender entropies looks as follows:

ℤ ℤ𝑑 (𝑑 ≥ 2)

Generic
SFT {0} (Proposition 8.8)
Sofic {0} (Proposition 9.12) Π3 (Theorem 9.13)

Effective Π3 (Theorem 9.2)

Computable Sofic {0} (Proposition 9.12) Π2 (Theorem 9.20)
Effective Π2 (Theorem 9.20)

Minimal Sofic {0} (Proposition 9.24)
Effective Π1 (Proposition 9.25)

1-block-gluing Sofic {0} (Proposition 9.12) Π3 (Theorem 9.28)
Effective Π3 (Theorem 9.26)

Figure 7.9: Possible extender entropies of various classes of subshifts (new results are highlighted). All sets should be intersected with ℝ+.

Draft: June 5, 2025 at 14:45.

60

[KM13] Kass and Madden, “A sufficient
condition for non-soficness of higher-
dimensional subshifts”.
[DR22] Destombes and Romashchenko,
“Resource-bounded Kolmogorov complex-
ity provides an obstacle to soficness ofmul-
tidimensional shifts”.

Final word In terms of soficity, this means in particular that the number
of extender sets of a multidimensional subshift cannot be used to distinguish
between sofic and effective subshifts. It had been conjectured that sofic ℤ𝑑

subshift would always have extender entropy zero in [KM13], which was
later disproved (see for example Example 8.5 from [DR22]): by proving
that the extender entropies of sofic and effective subshifts span the same
set of values, we definitely conclude that the number of extender sets of a
subshift cannot be used to prove or disprove its soficity.

Draft: June 5, 2025 at 14:45.

[FP19] French and Pavlov, “Follower, pre-
decessor, and extender entropies”.

67 By definition, patterns of different sizes
have distinct domains, and thus distinct
extender sets.

Extender sets of
multidimensional subshifts 8

In this section, we consider the generalization of extender sets of
subshifts to the multidimensional setting from [KM13], and the asso-
ciated extender entropy from [FP19], which is a dynamical invariant
obtained as the asymptotic growth rate of the number of extender sets.

8.1 Extender sets

[KM13] defines multidimensional extender sets as follows:

Definition 8.1. Given a ℤ𝑑 subshift 𝑋 ⊆ Aℤ𝑑 and a pattern 𝑤 ∈ A⊛𝑑, the
extender set of 𝑤 in𝑋 is defined by

𝐸𝑋(𝑤) = {𝑥|ℤ𝑑∖dom(𝑤) ∈ Aℤ𝑑∖dom(𝑤) ∶ 𝑥 ∈ 𝑋, 𝑥|dom(𝑤) = 𝑤}.

For two (potentially infinite) patterns 𝑢, 𝑣 ∈ A⊛𝑑, and a set of positions
𝐷 ⊆ dom(𝑢), recall that 𝑢 ⋉𝐷 𝑣 ∈ Adom(𝑢)∪dom(𝑣) denotes the pattern of
domain dom(𝑢)∪dom(𝑣) defined as (𝑢⋉𝐷𝑣)i = 𝑢i if i ∈ 𝐷, and (𝑢⋉𝐷𝑣)i = 𝑣i
otherwise. If dom(𝑢) and dom(𝑣) are disjoint,we also denote𝑢⊔𝑣 their union.
With these notations, the extender set of 𝑤 ∈ A⊛𝑑 in𝑋 ⊆ Aℤ𝑑 is:

𝐸𝑋(𝑤) = {𝑥 ∈ Aℤ𝑑∖dom(𝑤) ∶ 𝑥 ⊔ 𝑤 ∈ 𝑋}.

In a subshift𝑋 ⊆ Aℤ𝑑 , two patterns 𝑢 and 𝑣 inA⊛𝑑 verify 𝐸𝑋(𝑢) = 𝐸𝑋(𝑣)
if any occurence of 𝑢 in the configurations of 𝑋 can be swapped with 𝑣
without introducing a forbidden pattern.
One can think of extender sets (and, in particular, their number) as a way

of measuring the complexity of a subshift that is somewhat orthogonal to
the more traditional pattern complexity: the full-shift possesses a very easy
description but has maximal entropy. Extender sets measure the complexity
of patterns relatively to their completions into full configurations, and how
much information is needed to ensure that a pattern 𝑤 ∈ A⊛𝑑 is compatible
with a partial configuration 𝑥 ∈ Aℤ𝑑∖dom(𝑤).

Remark. At this point, I should probably address the following conflict of nota-
tions: on ℤ subshifts, the extender set of a pattern 𝑤 ∈ 𝐴∗ in𝑋 ⊆ Aℤ has been
defined to be both

𝐸𝑋(𝑤) = {(𝑥, 𝑦) ∈ A−ℕ ×Aℕ ∶ 𝑥𝑤𝑦 ∈ 𝑋}
and 𝐸𝑋(𝑤) = {𝑥 ∈ Aℤ∖dom(𝑤) ∶ 𝑥 ⊔ 𝑤 ∈ 𝑋}.

These definitions differ because string concatenation on ℤ allowed to define ex-
tender sets independently of the size of the pattern. Yet, from this point onward
we will exclusively use the newer definition: while it makes the assertion “a ℤ
subshift is sofic if and only if it defines finitely many extender sets”meaningless67,
the other characterization (𝑖) ⟺ (𝑖𝑖𝑖) in Proposition 6.5 still determines the
soficity of ℤ subshifts.

Draft: June 5, 2025 at 14:45. 61

62 8 Extender sets of multidimensional subshifts

Figure 8.1: A configuration of the sunny-
side-up.

Figure 8.2: A configuration of the mirror
subshift.

Figure 8.3: A configuration of the non-
deterministic mirror subshift.

8.2 Extender sets in example subshifts

Let us consider the opposite point of view: how does one create a subshift
that has some restrictions on the number of extender sets? In this section,
we consider a few examples of subshifts and describe their extender sets.

Classical subshifts

Example 8.2 (Full shifts). LetA be an alphabet, and𝑋 = Aℤ𝑑 the associated
full shift. As in the one-dimensional case, for every domain𝐷 ⊆ ℤ𝑑, there exists
a single extender set for patterns ofA𝐷: for 𝑤 ∈ A𝐷, we have

𝐸𝑋(𝑤) = {𝑥 ∈ Aℤ𝑑∖dom(𝑤)}.

Example 8.3 (Sunny-side-up). On the alphabet { , }, let𝑋 be the sunny-
side-up subshift composed of at most a single cell over a background:

𝑋 = {𝑥 ∈ { , }ℤ𝑑 ∶ |𝑥| ≤ 1}.

Then for very domain𝐷 ⊆ ℤ𝑑, there exists two extender sets for the valid patterns
of 𝑤 ∈ { , }𝐷: either there exists i ∈ 𝐷 such that 𝑤i = , in which case

𝐸𝑋(𝑤) = { ℤ𝑑∖𝐷};

or 𝑤 = 𝐷, in which case any partial configuration of𝑋 belongs to its extender
set:

𝐸𝑋(𝑤) = {𝑥 ∈ { , }ℤ𝑑∖𝐷 ∶ |𝑥| ≤ 1}.

Mirror, mirror

Example 8.4 (Mirror subshift). On the alphabet { , , }, let 𝑋 be the
mirror subshift: at most a single hyperplane ℤ𝑑−1 reflects and cells on both
its sides, acting as a mirror
𝑋 = { , }ℤ𝑑∪ ⋃

𝑖0∈ℤ
{𝑥 ∈ { , , ℤ𝑑 ∶ ∀𝑖 ∈ ℤ, j ∈ ℤ𝑑−1, 𝑥𝑖,j = ⟺ 𝑖 = 𝑖0

and ∀𝑖 ∈ ℤ, j ∈ ℤ𝑑−1, 𝑥𝑖0+𝑖,j = 𝑥𝑖0−𝑖,j.}

Then the patterns of domain ⟦𝑛1,… , 𝑛𝑑⟧ admit at least 2𝑛1⋯𝑛𝑑 extender sets.
Indeed, let 𝐶 = {𝑥 ∈ 𝑋∶ 𝑥|𝑛1×ℤ𝑑−1 = ℤ𝑑−1} be the set of configurations in
which the mirror is placed at the hyperplane {𝑛1} × ℤ𝑑−1. For any two distinct
words 𝑤,𝑤′ ∈ { , }⟦𝑛1,…,𝑛𝑑⟧, let us consider a configuration 𝑥 ∈ 𝐶 such that
𝑥|⟦𝑛1,…,𝑛𝑑⟧ = 𝑤. By the symmetry condition on𝑋, 𝑤′ ⋉⟦𝑛1,…,𝑛𝑑⟧ 𝑥 is not a valid
configuration of𝑋; thus, 𝐸𝑋(𝑤) ≠ 𝐸𝑋(𝑤′).

Unfortunately, the mirror subshift is famously non-sofic (as seen on ℤ2

in Proposition 7.1). However, it is actually very easy to create a very similar
subshift, with the same number of extender sets, but that is actually sofic:

Example 8.5 (Non-deterministic mirror). Let us slightly alter the mirror sub-
shift: instead of mirroring a whole half-space of symbols { , }, let us mirror at
most one cell instead: on the alphabet { , , , }, we define𝑋 as the completion
of the following set of configurations:
⋃
𝑖0∈ℤ

{𝑥 ∈ { , , , }ℤ𝑑 ∶ ∀𝑖 ∈ ℤ, j ∈ ℤ𝑑−1, 𝑥𝑖,j = ⟺ 𝑖 = 𝑖0
𝑖 < 𝑖0 ⟹ 𝑥𝑖,j ∈ { , }, 𝑖 > 𝑖0 ⟹ 𝑥𝑖,j ∈ { , , }
and there exists at most a single (𝑖, j) ∈ ℤ𝑑 such that 𝑥𝑖0+𝑖,j ∈ { , },

in which case 𝑥𝑖0+𝑖,j = 𝑥𝑖0−𝑖,j}.

We prove that patterns of domain ⟦𝑛1,… , 𝑛𝑑⟧ yield at least 2𝑛1⋯𝑛𝑑 extender
sets. To do so, fix two distinct words 𝑤,𝑤′ ∈ { , }⟦𝑛1,…,𝑛𝑑⟧. By definition, there
exists some 𝑖 ∈ [1 .. 𝑛1] and 𝑗 ∈ ⟦𝑛2,… , 𝑛𝑑⟧ such that 𝑤𝑛1−𝑖,𝑗 ≠ 𝑤′

𝑛1−𝑖,𝑗.
Let 𝑥 ∈ 𝑋 be a configuration such that 𝑥|⟦𝑛1,…,𝑛𝑑⟧ = 𝑤, 𝑥|{𝑛1}×ℤ𝑑−1 = ℤ𝑑−1

and 𝑥𝑛1+𝑖,𝑗 ∈ { , } reflects the cell 𝑥𝑛1−𝑖,𝑗. Then 𝑤′ ⋉⟦𝑛1,…,𝑛𝑑⟧ 𝑥 is not a valid
configuration of 𝑋, because it breaks the symmetry condition: this proves that
𝐸𝑋(𝑤) ≠ 𝐸𝑋(𝑤′).

Draft: June 5, 2025 at 14:45.

8.3 Properties of extender sets 63

68 For a given domain 𝐷 ⊆ ℤ𝑑, two pat-
terns 𝑢, 𝑣 ∈ A𝐷 are swappable if any oc-
curence of 𝑢 in a configuration of𝑋 can
be replaced by 𝑣without introducing a for-
bidden pattern.

69 We denote by 𝑑 the 𝐿1 (or. “Manhat-
tan”) distance on ℤ𝑑.

[Sch95] Schmidt, “The cohomology of
higher-dimensional shifts of finite type”.
[Hoc10] Hochman, “On the automor-
phism groups of multidimensional shifts
of finite type”.

Lifts

Example 8.6 (Periodic lifts). Let𝑋 ⊆ Aℤ𝑑 be a subshift, and let us consider
its periodic lift

𝑋⇑ = {𝑥′ ∈ Aℤ𝑑+1 ∶ ∃𝑥 ∈ 𝑋,∀𝑖 ∈ ℤ, 𝑥′|{𝑖}×ℤ𝑑 = 𝑥}.

Because of periodicity in the configurations of𝑋⇑, distinct finite patterns have
distinct extender sets.More precisely, for𝑤′ ∈ A⟦𝑛1,…,𝑛𝑑+1⟧ a valid pattern in𝑋⇑,
there exists 𝑤 ∈ A⟦𝑛2,…,𝑛𝑑+1⟧ such that 𝑤′|{𝑖}×⟦𝑛2,…,𝑛𝑑+1⟧ = 𝑤 for every 𝑖 ∈ ⟦𝑛1⟧.
Then,

𝐸𝑋⇑(𝑤′) = {𝑥′ ∈ Aℤ𝑑∖⟦𝑛1,…,𝑛𝑑+1⟧ ∶ ∃𝑥 ∈ 𝐸𝑋(𝑤), 𝑥′|{𝑖}×ℤ𝑑 = 𝑤 ⊔ 𝑥 if 𝑖 ∉ ⟦𝑛1⟧

and 𝑥′|{𝑖}×(ℤ𝑑∖⟦𝑛2,…,𝑛𝑑⟧) = 𝑥 otherwise}.

Example 8.7 (Free lifts). Let𝑋 ⊆ Aℤ𝑑 be a subshift, and let us consider its
free lift

𝑋⇌ = {𝑥′ ∈ Aℤ𝑑+1 ∶ ∀𝑖 ∈ ℤ, 𝑥′|{𝑖}×ℤ𝑑 ∈ 𝑋}.

Then the extenders of 𝑋⇌ are products of extenders of 𝑋: more precisely, for
𝑤 ∈ A⟦𝑛1,…,𝑛𝑑+1⟧, we have:

𝐸𝑋⇌(𝑤′) = {𝑥′ ∈ Aℤ𝑑∖⟦𝑛1,…,𝑛𝑑+1⟧ ∶ ∃(𝑥0,… , 𝑥𝑛1−1) ∈
𝑛1−1

∏
𝑖=0

𝐸𝑋(𝑤′|{𝑖}×⟦𝑛2,…,𝑛𝑑+1⟧),

𝑥′|{𝑖}×ℤ𝑑 ∈ 𝑋 if 𝑖 ∉ ⟦𝑛1⟧ and 𝑥′|{𝑖}×⟦𝑛2,…,𝑛𝑑+1⟧ = 𝑥𝑖 otherwise}.

8.3 Properties of extender sets

Extender sets regularly appear in the litterature under various disguises.
Most frequently, they appear in the context of swappable pairs of patterns68
in subshifts of finite type.

8.3.1 Subshifts of finite type

In subshifts of finite type, the border of a pattern entirely determines its
extender set. More precisely, for 𝑆 ⊆ ℤ𝑑 a subset of positions, we denote by
𝜕𝑙(𝑆) the border of 𝑆 of width 𝑙, formally defined as69:

𝜕𝑙(𝑆) = {s ∈ 𝑆∶ 𝑑(s, 𝑆𝑐) ≤ 𝑙}.

The interior of 𝑆 is then defined as I𝑙(𝑆) = 𝑆 ∖ 𝜕𝑙(𝑆), and the diameter of 𝑆
as diam(𝑆) = max𝑖,𝑗∈𝑆 𝑑(𝑖, 𝑗).

Proposition 8.8. Let 𝑋 ⊆ Aℤ𝑑 be a subshift of finite type and F a family of
forbidden patterns that defines𝑋. Denote 𝑙 = max𝑓∈F diam(dom(𝑓)). Then for
𝑤 ∈ A⊛𝑑, the extender set of 𝑤 is entirely determined by 𝑤|𝜕𝑙(dom(𝑤)).
In other words: for𝐷 ⊆ ℤ𝑑 a finite domain and 𝑤,𝑤′ ∈ A𝐷 two patterns such

that 𝑤,𝑤′ ∈ L(𝑋), having 𝑤|𝜕𝑙(𝐷) = 𝑤′|𝜕𝑙(𝐷) implies that 𝐸𝑋(𝑤) = 𝐸𝑋(𝑤′).

Proof. Fix𝐷 ⊆ ℤ𝑑 and two finite patterns𝑤,𝑤′ ∈ A𝐷 such that𝑤,𝑤′ ∈ L(𝑋)
and 𝑤|𝜕𝑙(𝐷) = 𝑤′|𝜕𝑙(𝐷); and consider 𝑥 ∈ 𝐸𝑋(𝑤) (so that 𝑥 ⊔ 𝑤 ∈ 𝑋).
Since 𝑤|𝜕𝑙(𝐷) = 𝑤′|𝜕𝑙(𝐷), no forbidden pattern appears in the partial con-

figuration 𝑥⊔𝑤′|𝜕𝑙(𝐷). Since 𝑤′ ∈ L(𝑋), no forbidden pattern appears in 𝑤′.
Since no forbidden pattern can overlap between dom(𝑥) and the interior
I𝑙(dom(𝑤)) by definition of 𝑙, the configuration 𝑥 ⊔ 𝑤′ is valid in𝑋.

A counting argument is very often used to prove that two patterns in an
SFT have the same extender set. The following argument exists in multiple
variations [Sch95; Hoc10, …], the most simple being:

Draft: June 5, 2025 at 14:45.

64 8 Extender sets of multidimensional subshifts

70 For 𝐹 = 𝜕𝑙(⟦𝑛⟧𝑑), a pattern𝑤 ∈ A𝐹 is
a marker if, for any configuration 𝑥 ∈ 𝑋
and any 𝑝, 𝑝′ ∈ ℤ𝑑 such that 𝑤 occurs in
𝑥 at positions 𝑝 and 𝑝′, either 𝑝 = 𝑝′ or
|𝑝 − 𝑝′| > 𝑚+ 𝑙.
[Hoc10] Hochman, “On the automor-
phism groups of multidimensional shifts
of finite type”.
71Where a configuration 𝑥 ∈ Aℤ𝑑 is aperi-
odic if for every 𝑝 ∈ ℤ𝑑, there exists a break-
ing position 𝑖 ∈ ℤ𝑑 such that 𝑥𝑖 ≠ 𝑥𝑖+𝑝.

[Sim15] Simpson, “Symbolic dynamics:
entropy = dimension = complexity”.

Example 8.9. Let 𝑋 be an SFT such that ℎ(𝑋) > 0. Then there exists two
distinct finite patterns 𝑢, 𝑣 ∈ L(𝑋) such that 𝐸𝑋(𝑢) = 𝐸𝑋(𝑣).

Proof. Fix F a family of forbidden patterns defining𝑋, and denote by 𝑙 the
diameter of this family: 𝑙 = max𝑓∈F diam(dom(𝑓)).
By definition of ℎ(𝑋), the number of square patterns of domain ⟦𝑛⟧𝑑 is

|L⟦𝑛⟧𝑑(𝑋)| = 2ℎ(𝑋)⋅𝑛𝑑+𝑜(𝑛𝑑). However, the number of 𝜕𝑙(⟦𝑛⟧𝑑) patterns is
bounded by 2𝑙⋅𝑂(𝑛𝑑−1). By the socket-drawer principle, there exists 𝑛 ∈ ℕ and
two distinct patterns 𝑤,𝑤′ ∈ L⟦𝑛⟧𝑑(𝑋) such that 𝑤|𝜕𝑙(⟦𝑛⟧𝑑) = 𝑤′|𝜕𝑙(⟦𝑛⟧𝑑). By
the previous proposition, this implies that 𝐸𝑋(𝑤) = 𝐸𝑋(𝑤′).

In the previous example, the finite patterns 𝑢 and 𝑣 can actually have the
same marker on their borders70 [Hoc10, Corollary 13]; in particular, their
occurrences in𝑋 cannot intersect, which removes issues like Example 8.12.

8.3.2 Aperiodicity

Exchanging patterns is very often used to prove the existence of aperiodic
configurations71: indeed, subshifts of finite type contain aperiodic configura-
tions, which can be proved using Kolmogorov complexity [Sim15], measures
of maximal entropy, or by combining Example 8.9 with the following geo-
metrical argument:

Proposition 8.10. Let 𝑋 ⊆ Aℤ𝑑 be a subshift and 𝑤,𝑤′ ∈ L(𝑋) be two
distinct finite patterns such that 𝐸𝑥(𝑤) = 𝐸𝑋(𝑤′). There exists an aperiodic
configuration 𝑥 ∈ 𝑋.

Proof. Let 𝑥 ∈ 𝑋 be a configuration such that 𝑥|dom(𝑤) = 𝑤. Assume that 𝑥
is periodic of period 𝑝 ∈ ℤ𝑑, and since 𝐸𝑋(𝑤) = 𝐸𝑋(𝑤′) let us denote 𝑥′ a
configuration in which an occurence of 𝑤 in 𝑥 has been replaced by 𝑤′. We
claim that 𝑥′ is aperiodic.
Indeed, let 𝑞 ∈ ℤ𝑑 be a vector. If 𝑞 was broken in 𝑥 at position 𝑖 ∈ ℤ𝑑, by

𝑝-periodicity of 𝑥 it was broken at all positions 𝑖 + ℤ ⋅ 𝑝, such that infinitely
many breaks of 𝑞 still exist in 𝑥′. If 𝑞 was a period in 𝑥, then since a single
occurence of 𝑤 has been replaced by 𝑤′ in 𝑥′, 𝑞 cannot be a period of 𝑥′.

One should remark, however, that sofic subshifts of positive entropy also
contain aperiodic configurations, even though we cannot guarantee that
the two considered patterns 𝑤,𝑤′ verify 𝐸𝑋(𝑤) = 𝐸𝑋(𝑤′): they can be ex-
changed in some configurations, but not necessarily all of them.

8.3.3 Iterated replacements

By definition, the extender sets of two patterns 𝑤 and 𝑤′ are equal if and
only if any occurence of 𝑤 in a configuration can be replaced by 𝑤′. This
process can be (carefully) iterated to obtain the following lemma:

Proposition 8.11. Let𝑋 ⊆ Aℤ𝑑 be a subshift and 𝑤,𝑤′ ∈ L(𝑋) be two finite
patterns such that 𝐸𝑋(𝑤) = 𝐸𝑋(𝑤′). There exists a configuration 𝑥 ∈ 𝑋 such
that 𝑤′ does not appear in 𝑥.

The intuition would be to swap any occurence of 𝑤′ with an occurence of
𝑤 (using the fact that 𝐸𝑋(𝑤) = 𝐸𝑋(𝑤′)). Unfortunately, replacing 𝑤′ by 𝑤
might introduce other occurences of 𝑤′ in the considered configuration; for
example, consider the following case:

Draft: June 5, 2025 at 14:45.

8.4 Extender entropy 65

72 The first occurence of this argument
that I know of appeared in the proof of
[QT00, Lemma 2.2].

73 Note that 𝐸𝑋(⟦𝑛1,… ,𝑛𝑑⟧) is a set of
extender sets, and not an extender set it-
self. In particular, it does not count partial
configurations: it is the number of equiva-
lence classes of patterns of a given size.
74 To be precise: given (#»𝑛 (𝑘))𝑘∈ℕ for
#»𝑛 (𝑘) ∈ ℕ𝑑 an increasing sequence,
(|𝐸𝑋(#»𝑛 (𝑘))|)𝑘∈ℕ is not monotonic.
[OP16] Ormes and Pavlov, “Extender sets
and multidimensional subshifts”.
75 (Attributed toMartinDelacourt) There
exists a ℤ subshift 𝑌 ⊆ {𝑎, 𝑏, 𝑐}ℤ with
𝑁𝑋(⟦2𝑛⟧) = 46 and𝑁𝑋(⟦2𝑛+1⟧) = 44.
[Fre16a] French, “Characterizing fol-
lower and extender set sequences”.
[FP19] French and Pavlov, “Follower, pre-
decessor, and extender entropies”.

Example 8.12. LetA = { , } and let𝑋 be the subshift defined by the forbid-
den patterns F = { }.

⇕

Figure 8.4: Replacing 𝑤′ in a configura-
tion of𝑋.

Let 𝑥 ∈ Aℤ be the configuration defined as 𝑥𝑖 = if 𝑖 < 0, and 𝑥𝑖 = other-
wise, and pick 𝑤′ = and 𝑤 = . It is clear that 𝐸𝑋(𝑤) = 𝐸𝑋(𝑤′),
and 𝑤′ does occur only once in 𝑥; however, replacing 𝑤′ by 𝑤 introduces another
occurence of 𝑤′ in 𝑥 (shifted by one cell). Thus, removing 𝑤′ from 𝑥 requires
infitely many replacements.

We prove Proposition 8.11 sequentially

[QT00] Quas and Trow, “Subshifts of
multi-dimensional shifts of finite type”.

72: as in the previous example, we
iteratively remove all occurences of 𝑤′.

Proof. Consider 𝑤,𝑤′ ∈ L(𝑋) two distinct finite patterns with the same
extender set 𝐸𝑋(𝑤) = 𝐸𝑋(𝑤′); and denote𝐷 = dom(𝑤) = dom(𝑤′).
Denoting ≤lex the usual lexicographic ordering on ℤ𝑑, let us fix some

arbitrary ordering ⪯ onA and extend it to (partial) lexicographic orderings
⪯lex onA𝐷 for𝐷 ⊆ ℤ𝑑: for 𝑢, 𝑣 ∈ A𝐷, we have 𝑢 ⪯lex 𝑣 if either 𝑢 = 𝑣, or if
there exists some i ∈ 𝐷 such that 𝑢i ≺ 𝑣i and 𝑢j = 𝑣j for all i <lex j.
Without loss of generality, assume that 𝑤 ≺lex 𝑤′ (otherwise, change the

ordering⪯ onA). Let us fix 𝑦 a configuration in which𝑤′ appears.We prove
that there exists a configuration 𝑦(𝑛) such that 𝑤′ does not appear in the ball
[−𝑛 .. 𝑛]𝑑. This will conclude the proof by compactness.
Consider 𝑦|[−𝑛..𝑛]𝑑 . If 𝑤′ does not appear in 𝑦|[−𝑛..𝑛]𝑑 , we can take 𝑦(𝑛) = 𝑦.

Otherwise, let us pick an occurence of 𝑤′ in 𝑦|[−𝑛..𝑛]𝑑 . As 𝐸𝑋(𝑤′) = 𝐸𝑋(𝑤),
we can replace this occurence of 𝑤′ with an occurence of 𝑤: this results in
a configuration 𝑦′ that belongs in 𝑋, but such that 𝑦′|[−𝑛..𝑛]𝑑 ≺lex 𝑦|[−𝑛..𝑛]𝑑 .
Since finitely many patterns color [−𝑛 .. 𝑛]𝑑, repeating these replacements
must eventually terminate in a configuration 𝑦(𝑛) such that 𝑤′ does not
appear in 𝑦(𝑛)|[−𝑛..𝑛]𝑑 .

8.3.4 Minimality

An application of Proposition 8.11 is the following: in a minimal subshift,
there are no interchangeable pairs. In other words:

Proposition 8.13. In a minimal subshift 𝑋 ⊆ Aℤ𝑑 , each extender set corre-
sponds to a single pattern: in other words, for two finite patterns 𝑤,𝑤′ ∈ L(𝑋),
𝐸𝑋(𝑤) = 𝐸𝑋(𝑤′) if and only if 𝑤 = 𝑤′.

Proof. By contraposition, assume there exists two distinct finite patterns
𝑤,𝑤′ ∈ L(𝑋) such that 𝐸𝑋(𝑤) = 𝐸𝑋(𝑤′). By Proposition 8.11, there exists
a configuration 𝑥 in which 𝑤′ does not appear and𝑋 is not minimal.

8.4 Extender entropy

From now on, we will count the number of extender sets of a given size in
subshifts. For a subshift𝑋 ⊆ Aℤ𝑑 , we slightly abuse notations and denote by
𝐸𝑋(⟦𝑛1,… , 𝑛𝑑⟧) all the extender sets of patterns of domain ⟦𝑛1,… , 𝑛𝑑⟧, i.e.

𝐸𝑋(⟦𝑛1,… , 𝑛𝑑⟧) = {𝐸𝑋(𝑤)∶ 𝑤 ∈ A⟦𝑛1,…,𝑛𝑑⟧}.73

As is usual with subshifts and complexity measures, the exact behavior of
the sequence (|𝐸𝑋(⟦𝑛1,… , 𝑛𝑑⟧)|)𝑛1,…,𝑛𝑑∈ℕ𝑑 can greatly vary. Unfortunately,
the sequence is not monotonic74 [OP16, Example 3.575], and even in the
case of ℤ sofic subshifts, (|𝐸𝑋(#»𝑛)|) #»𝑛∈ℕ can be almost any eventually periodic
sequence [Fre16a, Theorem 1.3].
Our study of the sequence (|𝐸𝑋(⟦𝑛1,… , 𝑛𝑑⟧)|)𝑛1,…,𝑛𝑑∈ℕ𝑑 mostly focuses on

its asymptotic growth, which was introduced in [FP19] under the name of

Draft: June 5, 2025 at 14:45.

66 8 Extender sets of multidimensional subshifts

76 See Section 2.2, Definition 2.1 for a
brief explanation about multivariate lim-
its. Informally: the limit is taken when all
the 𝑛𝑖’s grow to +∞.

extender entropy.

Definition 8.14. Let 𝑋 ⊆ Aℤ𝑑 be a subshift. The extender entropy of 𝑋,
denoted ℎ𝐸(𝑋), is defined as76:

ℎ𝐸(𝑋) = lim
𝑛1,…,𝑛𝑑∈ℕ𝑑

log |𝐸𝑋(⟦𝑛1,… , 𝑛𝑑⟧)|
𝑛1 ⋯𝑛𝑑

.

Proposition 8.15. The limit in the previous definition exists and is well-defined.
Furthermore,

lim
𝑛1,…,𝑛𝑑∈ℕ𝑑

log |𝐸𝑋(⟦𝑛1,… , 𝑛𝑑⟧)|
𝑛1 ⋯𝑛𝑑

= inf
𝑛1,…,𝑛𝑑∈ℕ𝑑

log |𝐸𝑋(⟦𝑛1,… , 𝑛𝑑⟧)|
𝑛1 ⋯𝑛𝑑

.

Proof. We prove that the function 𝑛1,… , 𝑛𝑑 ↦ |𝐸𝑋(⟦𝑛1,… , 𝑛𝑑⟧)| is submul-
tiplicative. The proposition will then follow from the multivariate version
of the subadditive lemma (see Lemma 2.3).
More formally, fix some 1 ≤ 𝑖 ≤ 𝑑, 𝑛1,… , 𝑛𝑑 ∈ ℕ𝑑 and𝑚𝑖 ∈ ℕ. We want

to prove that

|𝐸𝑋(⟦𝑛1,… , 𝑛𝑖 +𝑚𝑖,… , 𝑛𝑑⟧)| ≤
|𝐸𝑋(⟦𝑛1,… , 𝑛𝑖,… , 𝑛𝑑⟧)| ⋅ |𝐸𝑋(⟦𝑛1,… ,𝑚𝑖,… , 𝑛𝑑⟧)|.

To do so, consider the map

𝑓∶ A⟦𝑛1,…,𝑛𝑖+𝑚𝑖,…,𝑛𝑑⟧ → 𝐸𝑋(⟦𝑛1,… , 𝑛𝑖,… , 𝑛𝑑⟧) × 𝐸𝑋(⟦𝑛1,… ,𝑚𝑖,… , 𝑛𝑑⟧)

defined as follows: given an arbitrary pattern 𝑤 ∈ A⟦𝑛1,…,𝑛𝑖+𝑚𝑖,…,𝑛𝑑⟧, we
decompose𝑤 into𝑤 = 𝑢 ⊔ 𝑣with 𝑢 ∈ A⟦𝑛1,…,𝑛𝑖,…,𝑛𝑑⟧ and 𝑣 ∈ A⟦𝑛1,…,𝑚𝑖,…,𝑛𝑑⟧;
then, we define 𝑓(𝑤) to be (𝐸𝑋(𝑢), 𝐸𝑋(𝑣)).

𝑥

𝑢 𝑣
𝐸𝑋(𝑢) = 𝐸𝑋(𝑢′)

𝑥

𝑢′ 𝑣

Figure 8.5: Replacing 𝑢 by 𝑢′ in the configuration 𝑥 ⊔𝑤 = 𝑥 ⊔ (𝑢 ⊔ 𝑣).

Let us prove that if any two patterns 𝑤,𝑤′ ∈ A⟦𝑛1,…,𝑛𝑖+𝑚𝑖,…,𝑛𝑑⟧ verify
𝑓(𝑤) = 𝑓(𝑤′), then 𝐸𝑋(𝑤) = 𝐸𝑋(𝑤′). Indeed, denoting 𝑤 = 𝑢 ⊔ 𝑣 and
𝑤′ = 𝑢′ ⊔ 𝑤′ as above, we have by definition of 𝑓 that 𝐸𝑋(𝑢) = 𝐸𝑋(𝑢′) and
𝐸𝑋(𝑣) = 𝐸𝑋(𝑣′). Considering an arbitrary 𝑥 ∈ Aℤ𝑑∖dom(𝑤), we do successive
replacements and obtain:

𝑥 ⊔ 𝑤 ∈ 𝑋 ⟺ 𝑥⊔ 𝑢 ⊔ 𝑣 ∈ 𝑋
⟺Since𝐸𝑋(𝑢) = 𝐸𝑋(𝑢′). 𝑥 ⊔ 𝑢′ ⊔ 𝑣 ∈ 𝑋
⟺Since𝐸𝑋(𝑣) = 𝐸𝑋(𝑣′). 𝑥 ⊔ 𝑢′ ⊔ 𝑣′ ∈ 𝑋
⟺ 𝑥⊔ 𝑤′ ∈ 𝑋.

Thus, 𝐸𝑋(𝑤) = 𝐸𝑋(𝑤′). This implies that |𝐸𝑋(⟦𝑛1,… , 𝑛𝑖 +𝑚𝑖,… , 𝑛𝑑⟧)| ≤
|𝐸𝑋(⟦𝑛1,… , 𝑛𝑖,… , 𝑛𝑑⟧)| ⋅ |𝐸𝑋(⟦𝑛1,… ,𝑚𝑖,… , 𝑛𝑑⟧)| and concludes the proof.

Draft: June 5, 2025 at 14:45.

8.5 Examples 67

By definition of this limit, the extender entropy of𝑋 does not depend on
the sequence of hyperrectangles used to compute it: in other words,

Proposition 8.16. Let𝑋 ⊆ Aℤ𝑑 be a subshift. For any sequence of rectangular
domains (⟦𝑛(𝑘)

1 ,… , 𝑛(𝑘)
𝑑 ⟧)𝑘∈ℕ such that lim𝑘→+∞

𝑛(𝑘)
𝑖 = +∞ for every 1 ≤ 𝑖 ≤ 𝑑:

log |𝐸𝑋(⟦𝑛
(𝑘)
1 ,… , 𝑛(𝑘)

𝑑 ⟧)|
𝑛(𝑘)
1 ⋯ 𝑛(𝑘)

𝑑

−−−−→
𝑘→+∞

ℎ𝐸(𝑋).

In particular, it is enough to consider the extender sets over the domains ⟦𝑛⟧𝑑:

log |𝐸𝑋(⟦𝑛⟧𝑑)|
𝑛𝑑 −−−−→

𝑛→+∞
ℎ𝐸(𝑋).

Proof. Let 𝜀 > 0. By definition of ℎ𝐸(𝑋), there exists (𝑁1,… ,𝑁𝑑) ∈ ℕ𝑑 such
that, for all (𝑛1,… , 𝑛𝑑) ∈ ℕ𝑑:

(𝑛1,… , 𝑛𝑑) ≥ (𝑁1,… ,𝑁𝑑) ⟹ ∣ log |𝐸𝑋(⟦𝑛1,… , 𝑛𝑑⟧)|
𝑛1 ⋯𝑛𝑑

− ℎ𝐸(𝑋)∣ ≤ 𝜀.

Let (𝑛(𝑘)
1 ,… , 𝑛(𝑘)

𝑑)𝑘∈ℕ be a sequence such that lim𝑘→+∞𝑛(𝑘)
𝑖 = +∞ for every

1 ≤ 𝑖 ≤ 𝑑. In particular, there exists 𝐾 ∈ ℕ such that 𝑛(𝑘)
𝑖 ≥ 𝑁𝑖 for every

1 ≤ 𝑖 ≤ 𝑑 and 𝑘 ≥ 𝐾. Thus, for all 𝑘 ∈ ℕ:

𝑘 ≥ 𝐾 ⟹ ∣
log |𝐸𝑋(⟦𝑛

(𝑘)
1 ,… , 𝑛(𝑘)

𝑑 ⟧)|
𝑛(𝑘)
1 ⋯ 𝑛(𝑘)

𝑑

− ℎ𝐸(𝑋)∣ ≤ 𝜀.

8.5 Examples

Let us go back to the examples of Section 8.2 and compute their extender
entropies:

Example 8.17 (Full shift). Let𝑋 = Aℤ𝑑 be a full shift. Then ℎ𝐸(𝑋) = 0.

Example 8.18 (Sunny-side-up). Let 𝑋 ⊆ { , }ℤ𝑑 be the sunny-side-up
subshift. Then ℎ𝐸(𝑋) = 0.

Example 8.19 (Mirror subshifts). Let 𝑋 ⊆ { , , }ℤ𝑑 be the mirror sub-
shift and 𝑋′ ⊆ { , , , }ℤ𝑑 be the non-deterministic mirror subshift. Then
ℎ𝐸(𝑋) = ℎ𝐸(𝑋′) = 2.

Proof. We have proved that 𝐸𝑋(⟦𝑛⟧𝑑) ≥ 2𝑛2 . Since |L⟦𝑛⟧𝑑(𝑋)| ≤ (𝑛+ 1) ⋅ 2𝑛2

(by considering all positions at which the mirror hyperplane can appear),
we conclude by Proposition 8.22 that ℎ𝐸(𝑋) = 2. The proof is similar for
ℎ𝐸(𝑋′).

Example 8.20 (Periodic and free lifts). Let𝑋 ⊆ Aℤ𝑑 be any subshift. Then
ℎ𝐸(𝑋⇑) = 0 and ℎ𝐸(𝑋⇌) = ℎ𝐸(𝑋).

Proof. Since ℎ(𝑋⇑) = 0, we obtain by Proposition 8.22 that ℎ𝐸(𝑋⇑) = 0. In
the case of the free lift, we already noticed that

|𝐸𝑋⇌(⟦𝑛1,… , 𝑛𝑑+1⟧)| = |𝐸𝑋(⟦𝑛2,… , 𝑛𝑑+1⟧)|𝑛1 .

Thus, by taking logarithm and dividing by 𝑛1 ⋯𝑛𝑑+1, we conclude that
ℎ𝐸(𝑋⇌) = ℎ𝐸(𝑋).

The latter example will be used in the next chapter to lift properties/con-
structions from dimensions 𝑑 = 1 and 𝑑 = 2 to higher dimensions 𝑑′ ≥ 𝑑:

Corollary 8.21. Let 𝑋 ⊆ Aℤ𝑑 be a subshift that is effective (resp. sofic,
resp. SFT). Then𝑋⇌𝑑′ ⊆ Aℤ𝑑′ is a ℤ𝑑′ effective (resp. sofic, resp. SFT) subshift
such that ℎ𝐸(𝑋⇌𝑑′) = ℎ𝐸(𝑋).

Draft: June 5, 2025 at 14:45.

68 8 Extender sets of multidimensional subshifts

[FP19] French and Pavlov, “Follower, pre-
decessor, and extender entropies”.
77 Since𝜑 has radius 𝑟, we denote by𝜑(𝑤)
the pattern of domain I𝑟(𝐷) that is the
image of𝑤 by 𝜑.

𝑥′ =

𝑦′ =

Figure 8.6: This figure draws the areas
𝐷 ⊇ I𝑟(𝐷) ⊇ I2𝑟(𝐷) ⊇ I3𝑟(𝐷). In 𝑥′,
we draw𝐷 = dom(𝑤) = dom(𝑤′)with
and I2𝑟(𝐷) = dom(𝜑−1(𝜑(𝑤))) with .
In 𝑦′, we draw I𝑟(𝐷) = dom(𝜑(𝑤))
with andI3𝑟(𝐷) = dom(𝜑(𝑤′|I2𝑟(𝐷)))
with .
78 In an hyperrectangle of dimension 𝑑
and size 𝑛1 ⋯𝑛𝑑, there are 2𝑑 facets of
dimension 𝑑 − 1; and each facet of area
∏𝑗≠𝑖 𝑛𝑗 occurs twice.

8.6 Properties of extender entropies

8.6.1 Dynamical properties

Proposition 8.22. Let𝑋 ⊆ Aℤ𝑑 be a subshift. Then ℎ𝐸(𝑋) ≤ ℎ(𝑋).

Proof. The function 𝑓∶ 𝑤 ∈ L⟦𝑛1,…,𝑛𝑑⟧(𝑋) ↦ 𝐸𝑋(𝑤) ∈ 𝐸𝑋(⟦𝑛1,… , 𝑛𝑑⟧) is
surjective, so that |𝐸𝑋(⟦𝑛1,… , 𝑛𝑑⟧)| ≤ |L⟦𝑛1,…,𝑛𝑑⟧(𝑋)|. Going to the limit on
the 𝑛𝑖’s, we obtain ℎ𝐸(𝑋) ≤ ℎ(𝑋).

Proposition 8.23. Let 𝑋,𝑋′ ⊆ Aℤ𝑑 be two subshifts. Then ℎ𝐸(𝑋 × 𝑋′) =
ℎ𝐸(𝑋) + ℎ𝐸(𝑋′).

Proof. Let 𝑤,𝑤′ ∈ A∗𝑑 be such that dom(𝑤) = dom(𝑤′), and consider two
configurations 𝑥, 𝑥′ ∈ Aℤ𝑑∖dom(𝑤). By definition of the Cartesian product,
we have:

(𝑥, 𝑥′) ⊔ (𝑤,𝑤′) ∈ 𝑋 ×𝑋′ ⟺ (𝑥 ⊔ 𝑤, 𝑥′ ⊔ 𝑤′) ∈ 𝑋 ×𝑋′.

Thus, we deduce that 𝐸𝑋×𝑋′(𝑤,𝑤′) = 𝐸𝑋(𝑤) × 𝐸𝑋′(𝑤′), which results in
|𝐸𝑋×𝑋′(⟦𝑛1,… , 𝑛𝑑⟧)| = |𝐸𝑋(⟦𝑛1,… , 𝑛𝑑⟧)| ⋅ |𝐸𝑋′(⟦𝑛1,… , 𝑛𝑑⟧)|.

Proposition 8.24. The extender entropy is a conjugacy invariant of ℤ𝑑 sub-
shifts.

The classical topological entropy can be proved to be a conjugacy invariant,
since topological entropy is (weakly) decreasing under factor map. Unfortu-
naly, extender entropy is not monotonic under factor maps, as noticed in
[FP19, Theorem 3.7]. Thus, we proceed differently.

Proof. Let𝑋 ⊆ Aℤ𝑑 and 𝑌 ⊆ Bℤ𝑑 be two conjugated subshifts by a bijective
factor map 𝜑 ∶ 𝑋 → 𝑌 of biradius 𝑟. We prove that ℎ𝐸(𝑋) = ℎ𝐸(𝑌).

Claim. For 𝐷 ⊆ ℤ𝑑 a finite domain and any two patterns 𝑤,𝑤′ ∈ A𝐷 such
that 𝑤|𝜕4𝑟(𝐷) = 𝑤′|𝜕4𝑟(𝐷) and 𝐸𝑋(𝑤|I2𝑟(𝐷)) = 𝐸𝑋(𝑤′|I2𝑟(𝐷)). We claim that
𝐸𝑌(𝜑(𝑤)) = 𝐸𝑌(𝜑(𝑤′)).77

Indeed, let 𝑦 be a configuration in 𝑌 such that 𝑦|I𝑟(𝐷) = 𝜑(𝑤). Since 𝜑−1

is bijective, there exists some 𝑥 such that 𝜑(𝑥) = 𝑦: since 𝜑−1 has radius 𝑟,
we deduce that 𝑥|I2𝑟(𝐷) = 𝑤|I2𝑟(𝐷). Since 𝐸𝑋(𝑤|I2𝑟(𝐷)) = 𝐸𝑋(𝑤′|I2𝑟(𝐷)), we
know that the configuration 𝑥′ defined by 𝑥𝑖

′ = 𝑥𝑖 if 𝑖 ∉ I2𝑟(𝐷) and 𝑥𝑖
′ = 𝑤𝑖

′

otherwise is valid in𝑋. Finally, let us consider 𝑦′ = 𝜑(𝑥′) ∈ 𝑌:
• Since 𝜑 has radius 𝑟 and that 𝑥|ℤ𝑑∖I4𝑟(𝐷) = 𝑥′|ℤ𝑑∖I4𝑟(𝐷), we have

𝑦′|ℤ𝑑∖I3𝑟(𝐷) = 𝑦|ℤ𝑑∖I3𝑟(𝐷).

In particular,

𝑦′|ℤ𝑑∖I𝑟(𝐷) = 𝑦|ℤ𝑑∖I𝑟(𝐷)

𝑦′|I𝑟(𝐷)∖I3𝑟(𝐷) = 𝑦|I𝑟(𝐷)∖I3𝑟(𝐷) = 𝜑(𝑤)|I𝑟(𝐷)∖I3𝑟(𝐷)

= 𝜑(𝑤′)|I𝑟(𝐷)∖I3𝑟(𝐷).

(the latter holding because 𝜑 has radius 𝑟 and 𝑤|𝜕4𝑟(𝐷) = 𝑤′|𝜕4𝑟(𝐷).)
• And since 𝑥′|I2𝑟(𝐷) = 𝑤′|I2𝑟(𝐷), we have

𝑦′|I3𝑟(𝐷) = 𝜑(𝑤′)|I3𝑟(𝐷).

Draft: June 5, 2025 at 14:45.

8.6 Properties of extender entropies 69

[CPV25] Callard, Paviet Salomon, and
Vanier, “Computability of extender sets
in multidimensional subshifts”.

In particular, we have 𝑦′|ℤ𝑑∖I𝑟(𝐷) = 𝑦|ℤ𝑑∖I𝑟(𝐷), and 𝑦′|I𝑟(𝐷) = 𝜑(𝑤′). Thus
𝐸𝑌(𝜑(𝑤)) ⊆ 𝐸𝑌(𝜑(𝑤′)) and by symmetry 𝐸𝑌(𝜑(𝑤)) = 𝐸𝑌(𝜑(𝑤′)).

End of the proof. From the previous claim, we deduce that78:

|𝐸𝑌(⟦𝑛1 − 2𝑟,… , 𝑛𝑑 − 2𝑟⟧)| ≤ 2∑
𝑑
𝑖=1 2⋅4𝑟⋅∏𝑗≠𝑖 𝑛𝑗 ⋅ |𝐸𝑋(⟦𝑛1 − 4𝑟,… , 𝑛𝑑 − 4𝑟⟧)|;

and the symmetric bound exists when exchanging𝑋 and 𝑌. Completing the
computations, we conclude that ℎ𝐸(𝑋) = ℎ𝐸(𝑌).

8.6.2 Computational complexity

Finally, we relate the computational complexity of the extender entropy of a
subshift with the complexity of its language in the two following proposi-
tions.

Proposition 8.25. Let 𝑋 ⊆ Aℤ𝑑 be a subshift such that L(𝑋) is a Π0
𝑛 (resp.

Σ0
𝑛) language. Then, when given some finite𝐷 ⊆ ℤ𝑑 and two patterns 𝑢, 𝑣 ∈ A𝐷,
deciding whether 𝐸𝑋(𝑢) ⊆ 𝐸𝑋(𝑣) is a Π0

𝑛+1 problem. In particular, deciding
whether 𝐸𝑋(𝑢) = 𝐸𝑋(𝑣) is a Π0

𝑛+1 problem.

Sketch of proof. Notice that 𝐸𝑋(𝑢) ⊆ 𝐸𝑋(𝑣) if and only if:

∀𝑛 ∈ ℕ,∀𝑤 ∈ A⟦𝑛⟧𝑑 , 𝑢 ⊑ 𝑤 ⟹ (𝑤 ∉ L(𝑋)) ∨ (𝑤|dom(𝑤)∖𝐷 ⊔ 𝑣 ∈ L(𝑋)).

Since the righthand side of the implication is a disjunction between aΣ0
𝑛 and

a Π0
𝑛 problem, and that the only infinite quantification before it is “∀𝑛 ∈ ℕ”,

deciding the inclusion of extender sets is indeed a Π0
𝑛+1 problem.

We proved in [CPV25, Proposition 10] that, in the context of ℤ effective
subshifts, the inclusion of extender sets is in fact Π0

2-complete.

From the previous proposition, we deduce the computational complexity
of counting the number of extender sets:

Proposition 8.26. Let 𝑋 ⊆ Aℤ𝑑 be a subshift such that L(𝑋) is a Π0
𝑛 (resp.

Σ0
𝑛) language. Then, when given 𝑘 ∈ ℕ and (𝑛1,… , 𝑛𝑑) ∈ ℕ𝑑, determining
whether “𝑘 ≤ |𝐸𝑋(⟦𝑛1,… , 𝑛𝑑⟧)|” is a Σ0

𝑛+1 problem.

Proof. Indeed, 𝑘 ≤ |𝐸𝑋(⟦𝑛1,… , 𝑛𝑑⟧)| if and only if:

∃𝑢1,… , 𝑢𝑘 ∈ L⟦𝑛1,…,𝑛𝑑⟧(𝑋), ⋀
1≤𝑖<𝑗≤𝑘

𝐸𝑋(𝑣𝑖) ≠ 𝐸𝑋(𝑣𝑗).

Which we rewrite into:

∃𝑢1,… , 𝑢𝑘 ∈ A⟦𝑛1,…,𝑛𝑑⟧, ⋀
1≤𝑖≤𝑑

𝑢𝑖 ∈ L(𝑋) ∧ ⋀
1≤𝑖<𝑗≤𝑘

𝐸𝑋(𝑢𝑖) ≠ 𝐸𝑋(𝑢𝑗).

Since the quantification “∃𝑢1,… , 𝑢𝑘 ∈ A⟦𝑛1,…,𝑛𝑑⟧” is finite, and that Σ0
𝑛+1 is

stable by finite conjuctions, it follows from Proposition 8.25 that determin-
ing whether 𝑘 ≤ |𝐸𝑋(⟦𝑛1,… , 𝑛𝑑⟧)| is a Σ0

𝑛+1 problem.

Draft: June 5, 2025 at 14:45.

[CPV25] Callard, Paviet Salomon, and
Vanier, “Computability of extender sets
in multidimensional subshifts”.

Characterizations of
extender entropies 9

This section studies the set of possible values for extender entropies
of various classes of subshifts (effective, sofic, SFTs) with computa-
tional and dynamical properties.We completely characterize extender
entropies in the arithmetical hierarchy of real numbers, the main
result being Theorem 9.13: extender entropies of ℤ2 sofic subshifts
exactly span the (non-negative) Π3-computable real numbers.
Most of these results were published in [CPV25].

9.1 Subshifts of finite type

Theorem 9.1. Let𝑋 ⊆ Aℤ𝑑 be a subshift of finite type. Then ℎ𝐸(𝑋) = 0.

Proof. Let F be a finite family of forbidden patterns defining𝑋, and let us
denote 𝑙 ∈ ℕ the diameter 𝑙 = max𝑓∈F diam(dom(𝑓)). FromProposition 8.8,
the number of extender sets of domain ⟦𝑛⟧𝑑 is bounded by the number of
possible patterns of domain 𝜕𝑙(⟦𝑛⟧𝑑). In particular,

log |𝐸𝑋(⟦𝑛⟧𝑑)| ≤ 2𝑑𝑙 ⋅ log |A| ⋅ 𝑛𝑑−1 = 𝑂(𝑛𝑑−1).

Taking the limit, we obtain ℎ𝐸(𝑋) = 0.

9.2 Effective subshifts

Theorem 9.2. For 𝑑 ≥ 1, the set of extender entropies of ℤ𝑑 effective subshifts
is exactly [0,+∞) ∩ Π3.

This theorem is composed of two statements:

Lemma 9.3. Let 𝑍 ⊆ Aℤ𝑑 be an effective subshift. Then ℎ𝐸(𝑍) ∈ [0,+∞)∩Π3.

Proof. Since 𝑍 is effective, the finite patterns L(𝑍) ∩A∗𝑑 form a Π0
1 set. By

Proposition 8.26, we deduce that the sets {𝑘 ∈ ℕ ∣ 𝑘 ≤ |𝐸𝑍(⟦0, 𝑛⟧𝑑)| are Σ0
2

sets for 𝑛 ∈ ℕ; so that all {𝑟 ∈ ℚ ∣ 𝑟 ≤ log |𝐸𝑍(⟦0,𝑛⟧𝑑)|
𝑛𝑑 } are Σ0

2 sets too.
And since

ℎ𝐸(𝑍) = lim
𝑛→+∞

log |𝐸𝑍(⟦0, 𝑛⟧𝑑)|
𝑛𝑑 = inf

𝑛∈ℕ

log |𝐸𝑍(⟦0, 𝑛⟧𝑑)|
𝑛𝑑 ,

we conclude that ℎ𝐸(𝑍) ∈ Π3 as the infimum of a uniform sequence of Σ2
real numbers.

The rest of this section focuses on the converse statement. By Corol-
lary 8.21, we reduce to the one-dimensional case and are left with proving:

Lemma 9.4. For any real number 𝛼 ∈ [0,+∞) ∩Π3, there exists an effective ℤ
subshift 𝑍𝛼 such that ℎ𝐸(𝑍𝛼) = 𝛼.

The following sections are dedicated to proving Lemma 9.4 by providing
an explicit construction of such a 𝑍 effective subshift 𝑍𝛼. Let us fix 𝛼 ∈ Π3
(we reduce to the case 0 ≤ 𝛼 ≤ 1, since extender entropy is additive under

Draft: June 5, 2025 at 14:45. 71

72 9 Characterizations of extender entropies

79 Constructions with subshifts are often
defined in terms of “layers” 𝐿1,… ,𝐿𝑖:
by this, we mean that the resulting shift
is a subshift of the cartesian product of
∏𝑖∈𝐼 𝐿𝑖. In this context, we freely use the
isomorphism (A1 ×A2)ℤ ≃ Aℤ

1 ×Aℤ
2 to

denote configurations as either tuples of
configurations or configurations on tuples
of symbols. See Definition 3.10.

cartesian product by Proposition 8.23), and fix a presentation (𝛼𝑖,𝑗)𝑖,𝑗∈ℕ2

of 𝛼, that is a recursively enumerable family of Π1 real numbers such that
𝛼 = inf𝑖∈ℕ sup𝑗∈ℕ 𝛼𝑖,𝑗. We assume that 0 ≤ 𝛼𝑖,𝑗 ≤ 1 for all 𝑖, 𝑗 ∈ ℕ, and by
Proposition 4.20, we assume that the family (𝛼𝑖,𝑗)𝑖,𝑗∈ℕ2 satisfies somemono-
tonicity properties: for all 𝑖 ∈ ℕ, (𝑎𝑖,𝑗)𝑗∈ℕ is weakly increasing towards some
𝛼𝑖 ∈ [0, 1] ∩ Σ2; and the sequence (𝛼𝑖)𝑖∈ℕ is weakly decreasing towards 𝛼.

9.2.1 Encoding integers in configurations

The first step of this proof consists in fixing a method for the encoding
of integers within ℤ-configurations: to encode an integer 𝑖 ∈ ℕ, we use
configurations in which a symbol ∗ is 𝑖-periodic over a blank background.
More precisely, consider the alphabetA∗ = {∗, }. We define ⟨𝑖⟩𝑘1

as the
following 𝑖-periodic configuration ofAℤ

∗

⟨𝑖⟩𝑘1
= 𝜎𝑘1(… ∗ … ∗⏟

𝑖+1 symbols
… ∗ …),

or more formally (⟨𝑖⟩𝑘1
)𝑝 = ∗ if 𝑝 = 𝑘1 mod 𝑖 and (⟨𝑖⟩𝑘1

)𝑝 = otherwise. A
configuration ⟨𝑖⟩𝑘1

is said to encode the integer 𝑖 ∈ ℕ.

For 𝑖 ranging in ℕ and 𝑘1 ∈ ⟦𝑖⟧, all the configurations ⟨𝑖⟩𝑘1
generate a

subshift that we denote

𝑋∗ = ⋃
𝑖∈ℕ

{⟨𝑖⟩𝑘1
∈ Aℤ

∗ ∶ 0 ≤ 𝑘1 < 𝑖} ∪ ⟨∞⟩

where ⟨∞⟩ = {𝑥 ∈ Aℤ
∗ ∶ |𝑥|∗ ≤ 1} is the set of configurations containing at

most a single symbol ∗. The configurations of ⟨∞⟩ are said to be degenerate,
and appear in𝑋∗ as limit configurations of all the ⟨𝑖⟩𝑘1

.

9.2.2 Auxiliary subshift 𝑍 ′
𝛼

∗
1

∗
1 0 1 1 1 0 1 0 1 0 1 1 1 0 1

∗
1 0 1 1 1 0 1 0 1 0 1 1 1 0 1

∗
1 0 1 1 1 0 1 0 1 0 1 1 1 0 1

∗
1 0 1 1 1 0 1 0 1 0 1 1 1 0 1

∗
1 0 1 1 1 0 1 0 1

∗ ∗ ∗
•

Figure 9.1: A proper configuration (⟨15⟩11 , ⟨25⟩16 , 𝑧
(𝑑)) where 𝑧(𝑑) is obtained from the Toeplitz encoding T(𝛽) for 𝛽 = 5

8 = 0.101(2).

We first create an auxiliary subshift 𝑍′
𝛼 on the following three layers79:

1. First layer 𝐿1: We set 𝐿1 = 𝑋∗ to encode integers 𝑖 ∈ ℕ. Intuitively,
𝑖 ∈ ℕ will denote which Σ2 number 𝛼𝑖 is approximated in the configu-
ration.

2. Second layer 𝐿2: We also set 𝐿2 = 𝑋∗ to encode integers 𝑗 ∈ ℕ.
Intuitively, 𝑗 ∈ ℕ will denote which Π1 number 𝛼𝑖,𝑗 is approximated
in the configuration.

3. Density layer𝐿𝑑:We define the density layer𝐿𝑑 = {0, 1}ℤ.Whenever
the first two layers 𝐿1, 𝐿2 are non-degenerate and repectively encode
integers 𝑖 ∈ ℕ and 𝑗 ≥ 𝑖, this layer will be restricted to densities ≲ 𝛼𝑖,𝑗.
Since the real numbers 𝛼𝑖,𝑗 are a computably enumerable family of Π1
real numbers, the sets𝐷𝑖,𝑗 = {𝑎 ∈ {0, 1}ℕ ∶ ∑𝑘∈ℕ 𝑎𝑘2−(𝑘+1) ≤ 𝛼𝑖,𝑗} are
effectively closed, and so are the T(𝐷𝑖,𝑗).

such that 𝑍′
𝛼 is defined as:

𝑍′
𝛼 = {(𝑧(1), 𝑧(2), 𝑧(𝑑)) ∈ 𝐿1 × 𝐿2 × 𝐿𝑑 ∶ 𝑧(2) ∈ ⟨∞⟩}

∪ {(𝑧(1), 𝑧(2), 𝑧(𝑑)) ∈ 𝐿1 × 𝐿2 × 𝐿𝑑 ∶ ∃𝑖 ∈ ℕ, ∃𝑗 ≥ 𝑖, ∃𝑘1, 𝑘2 ∈ ℕ,

𝑧(1) = ⟨𝑖⟩𝑘1
, 𝑧(2) = ⟨𝑗⟩𝑘2

and ∃𝛽 ≤ 𝛼𝑖,𝑗, 𝑧
(𝑑)
𝑝+𝑘1

= T(𝛽)𝑝 mod 𝑖}.

Draft: June 5, 2025 at 14:45.

9.2 Effective subshifts 73

80 Namely: there can be at most a single ∗
symbol on 𝐿2 between two ∗ symbols on
𝐿1.

81 The distinction between proper and
degenerate patterns is, unfortunately, a
bit complex to clarify. Patterns in which
two symbols ∗ appear in the second layer
must be proper, since only proper config-
urations can contain several symbols ∗ on
their second (and thus, first) layer. How-
ever, the pattern 𝑧|⟦𝑛⟧ for a proper config-
uration 𝑧 that encodes very large integers
𝑖 ∈ ℕ, 𝑗 ≥ 𝑖 with 𝑖 ≥ 𝑛 is also proper.
Thus, most of the proof will reason on
proper configurations 𝑧 ∈ 𝑍′

𝛼 (and their
restrictions to ⟦𝑛⟧) instead of patterns.

Claim 9.5. Since 𝛼 ∈ Π3, the subshift 𝑍′
𝛼 is an effective ℤ subshift.

Proof. Since the subshift𝑋∗ is effective, the conditions on the first two layers
are straightforward to enforce80. To obtain the subshift 𝑍′

𝛼, we additionally
forbid patterns 𝑤 = (𝑤(1), 𝑤(2), 𝑤(𝑑)) of every support ⟦𝑛⟧ such that:

• 𝑤(1) is a restriction of ⟨𝑖⟩0 to ⟦𝑛⟧ containing at least two symbols ∗;

• 𝑤(2) is a restriction of ⟨𝑗⟩𝑘2
to ⟦𝑛⟧ (for some 𝑗 ≥ 𝑖) containing at least

two symbols ∗;
• Either 𝑤(𝑑) is not 𝑖-periodic, or we have [𝑤(𝑑)|⟦𝑖−1⟧]0 ∩ T(𝐷𝑖,𝑗) = ∅,
where𝐷𝑖,𝑗 = {𝑎 ∈ {0, 1}ℕ ∶ ∑𝑘∈ℕ 𝑎𝑘2−(𝑘+1) ≤ 𝛼𝑖,𝑗}.

Recall that, since (𝛼𝑖,𝑗)𝑖,𝑗∈ℕ2 are a computably enumerable family of Π1 real
numbers, the sets𝐷𝑖,𝑗 (and thus T(𝐷𝑖,𝑗) by Proposition 5.4) are effectively
closed. In particular, the aforementioned patterns form a computably enu-
merable family of forbidden patterns.

Let us call proper the configurations 𝑧 = (𝑧(1), 𝑧(2), ⋅) ∈ 𝑍′
𝛼 such that

𝑧(1) = ⟨𝑖⟩𝑘1
and 𝑧(2) = ⟨𝑗⟩𝑘2

for some 𝑖, 𝑗 ∈ ℕ. Conversely, let us call degener-
ate the configurations 𝑧 = (𝑧(1), 𝑧(2), ⋅) ∈ 𝑍′

𝛼 such that 𝑧(2) ∈ ⟨∞⟩. From this
separation, we distinguish patterns based on the configurations in which
they appear: patterns 𝑤 ∈ L(𝑍′

𝛼) that only appear in degenerate configura-
tions are called degenerate; while patterns 𝑤 ∈ L(𝑍′

𝛼) that can appear in a
proper configuration are called proper.81

The distinction is motivated by the two following claims:

Claim 9.6. Denote 𝐷𝐸(𝑛) = {𝐸𝑍′
𝛼
(𝑤)∶ 𝑤 ∈ L⟦𝑛⟧(𝑍′

𝛼) degenerate} the exten-
der sets of degenerate patterns of support ⟦𝑛⟧. Then |𝐷𝐸(𝑛)| = 𝑂(𝑛3).

Proof. Let 𝑢, 𝑣 ∈ L⟦𝑛⟧(𝑍′
𝛼) be two degenerate patterns such that 𝑢(1) = 𝑣(1)

and 𝑢(2) = 𝑣(2): then 𝑢 and 𝑣must verify 𝐸𝑍′
𝛼
(𝑢) = 𝐸𝑍′

𝛼
(𝑣) because there is

no restriction on their density layer. Since at most a single ∗ symbol can
appear on the second layer of degenerate patterns, and that their first layer is
either periodic or contains a single symbol ∗, we obtain𝐷𝐸(𝑛) = 𝑂(𝑛3).

Claim 9.7. For any two distinct proper patterns 𝑢, 𝑣 ∈ L⟦𝑛⟧(𝑍′
𝛼), we have

𝐸𝑍′
𝛼
(𝑢) ≠ 𝐸𝑍′

𝛼
(𝑣).

Proof. Let 𝑢 ∈ L⟦𝑛⟧(𝑍′
𝛼) be a proper pattern. By definition,𝑢 can be extended

into some proper configuration 𝑧 = (⟨𝑖⟩𝑘1
, ⟨𝑗⟩𝑘2

, 𝑧(𝑑)) such that 𝑧|⟦𝑛⟧ = 𝑢. By
definition, 𝑧 must be periodic and 𝑖 ⋅ 𝑗 is a period: thus, 𝑧|⟦𝑛⟧ is entirely
determined by 𝑧|ℤ∖⟦𝑛⟧: in particular, only 𝑢 can complete 𝑧|ℤ∖⟦𝑛⟧.

Yet, there are only polynomially many distinct proper patterns of a given
support ⟦𝑛⟧ in 𝑍′

𝛼. The next section will nevertheless create a subshift 𝑍𝛼
with the correct (exponential) number of proper patterns, thanks to:

Claim 9.8.

(i) Let 𝑖 ∈ ℕ be an integer and 𝑧 ∈ 𝑍′
𝛼 be a proper configuration such that

𝑧(1) = ⟨𝑖⟩𝑘1
. An 𝑖-period of the density layer 𝑧(𝑑) contains at most𝛼𝑖 ⋅𝑖+𝑂(1)

symbols 1.
(ii) Let 𝑖 ∈ ℕ be an integer and 𝑧 ∈ 𝑍′

𝛼 be a proper configuration such that
𝑧(1) = ⟨𝑖⟩𝑘1

. Then for any 𝑛 ≤ 𝑖, a factor of length 𝑛 of the density layer
𝑧(𝑑) contains at most 𝛼𝑛 ⋅ 𝑛 + 𝑂(1) symbols 1.

Proof. Point (i) follows directly from Claim 5.3. For point (ii), let 𝑧 ∈ 𝑍′
𝛼 be

a proper configuration such that 𝑧(1) = ⟨𝑖⟩𝑘1
for some 𝑖 ≥ 𝑛 and 0 ≤ 𝑘1 ≤ 𝑖:

denoting 𝑤 = 𝑧|⟦𝑛⟧, we might need to apply Claim 5.3 on two patterns 𝑢, 𝑣

Draft: June 5, 2025 at 14:45.

74 9 Characterizations of extender entropies

such that 𝑤(𝑑) = 𝑢 ⋅ 𝑣 (depending on the position of 𝑘1 ∈ ⟦𝑖⟧) to obtain that
the number of symbols 1 in 𝑤(𝑑) is bounded by 𝛼𝑖 ⋅ 𝑛 +𝑂(1). We conclude by
monotonicity of the sequence (𝛼𝑖)𝑖∈ℕ.

9.2.3 Free bits and the subshift 𝑍𝛼

To create the desired exponential number of extender sets, we create a
subshift 𝑍𝛼 by adding free bits {𝑏, 𝑑} on top of the symbols 1 of the density
layer of 𝑍′

𝛼. Informally, if there were 𝛽 ⋅ 𝑖 + 𝑂(1) symbols 1 in an 𝑖-period of
the density layer in 𝑍′

𝛼, adding free bits on top of the symbols 1 will yield
2𝛽⋅𝑖+𝑂(1) patterns in 𝑍𝛼. Thus, we add the following fourth layer:
4. Free layer 𝐿𝑓: We define the free layer 𝐿𝑓 = { , 𝑏, 𝑑}ℤ. Given the
synchronizing map 𝜋𝑠 ∶ { , 𝑏, 𝑑} → {0, 1} defined as 𝜋𝑠(𝑏) = 𝜋𝑠(𝑑) = 1,
and 𝜋𝑠() = 0, we say that two configurations 𝑧(𝑑) ∈ 𝐿𝑑 and 𝑧(𝑓) in 𝐿𝑓
are synchronized if 𝜋𝑠(𝑧(𝑓)) = 𝑧(𝑑).

so that

𝑍𝛼 = {(𝑧(1), 𝑧(2), 𝑧(𝑑), 𝑧(𝑓)) ∈ 𝐿1 × 𝐿2 × 𝐿𝑑 × 𝐿𝑓 ∶ 𝑧(2) ∈ ⟨∞⟩ }

∪ {(𝑧(1), 𝑧(2), 𝑧(𝑑), 𝑧(𝑓)) ∈ 𝐿1 × 𝐿2 × 𝐿𝑑 × 𝐿𝑓 ∶ ∃𝑖 ∈ ℕ, ∃𝑗 ≥ 𝑖, ∃𝑘1, 𝑘2 ∈ ℕ,
𝑧(1) = ⟨𝑖⟩𝑘1

, 𝑧(2) = ⟨𝑗⟩𝑘2
, 𝜋𝑠(𝑧(𝑓)) = 𝑧(𝑑),

∃𝛽 ≤ 𝛼𝑖,𝑗, 𝑧(𝑑)𝑝+𝑘1
= T(𝛽)𝑝 mod 𝑖 and 𝑧

(𝑓) is 𝑖-periodic}.

Claim 9.9. Since 𝛼 ∈ Π3, the ℤ subshift 𝑍𝛼 is effective.

Proof. This follows from 𝑍′
𝛼 being effective: on 𝑍′

𝛼 × 𝐿𝑓, we enforce the
𝑖-periodicity of the free layer and synchronize it with the density layer when-
ever the second layer contains at least two symbols ∗.

Extending the terminology from 𝑍′
𝛼 to 𝑍𝛼, we call proper the configura-

tions 𝑧 = (𝑧(1), 𝑧(2), ⋅ , ⋅) ∈ 𝑍𝛼 such that 𝑧(1) = ⟨𝑖⟩𝑘1
and 𝑧(2) = ⟨𝑗⟩𝑘2

for some
𝑖, 𝑗 ∈ ℕ with 𝑗 ≥ 𝑖; and degenerate the configuration (𝑧(1), 𝑧(2), ⋅ , ⋅) ∈ 𝑍𝛼
such that 𝑧(2) ∈ ⟨∞⟩. Similarly, a pattern is proper if it can be extended
into a proper configuration, and degenerate if it only extends to degenerate
configurations.
Since the free layer is 𝑖-periodic only in the case of proper configurations,

Claims 9.6 and 9.7 extends from 𝑍′
𝛼 to 𝑍𝛼 by the very same arguments:

Claim 9.10.

(i) Denote 𝐷𝐸(𝑛) = {𝐸𝑍𝛼
(𝑤)∶ 𝑤 ∈ L⟦𝑛⟧(𝑍𝛼) degenerate}. Then we have

|𝐷𝐸(𝑛)| = 𝑂(𝑛3).
(ii) Let 𝑢, 𝑣 ∈ L(𝑍𝛼) be two distinct proper patterns in 𝑍𝛼. Then we have

𝐸𝑍𝛼
(𝑢) ≠ 𝐸𝑍𝛼

(𝑣).

Thus, we are left with counting the number of proper patterns in 𝑍𝛼. For
𝑧 ∈ 𝑍𝛼 a proper configuration such that 𝑧(1) = ⟨𝑖⟩𝑘1

, the configuration 𝑧 is
𝑖-periodic; thus, the number of possible assignations of the free layer only
depends on the numbers of symbols 1 in an 𝑖-period 𝑧(𝑑)|⟦𝑖⟧. With this in
mind, we can prove the following bounds:

Lemma 9.11. Let 𝑃(𝑛) = {𝑤 ∈ L⟦𝑛⟧(𝑍𝛼) ∶ 𝑤 is proper}. Then:

2𝑛⋅𝛼𝑛+𝑂(1) ≤ 𝑃(𝑛) ≤ poly(𝑛) ⋅
𝑛
∑
𝑖=1

2𝛼𝑖⋅𝑖+𝑂(1).

Draft: June 5, 2025 at 14:45.

9.3 Sofic subshifts 75

Proof: lower bound. For 𝑛 ∈ ℕ and 𝑗 ≥ 𝑛, let us consider the configuration
𝑧′𝑗 = (⟨𝑛⟩0 , ⟨𝑗⟩0 , 𝑇 (𝛼𝑛,𝑗)⋅ mod 𝑛) ∈ 𝑍′

𝛼. By Claim 9.8, the number of symbols 1
in the density layer 𝑧′(𝑑)𝑗 |⟦𝑛⟧ is at least 𝛼𝑛,𝑗 ⋅ 𝑛 + 𝑂(1); and since 𝛼𝑛,𝑗 −→ 𝛼𝑛,
there exists some 𝐽 ≥ 𝑛 such that 𝑧′(𝑑)𝐽 |⟦𝑛⟧ contains at least 𝛼𝑛 ⋅ 𝑛 + 𝑂(1)
symbols 1.
Now, consider the patterns 𝑊 = {𝑧|⟦𝑛⟧ ∶ 𝑧 ∈ 𝑍𝛼, (𝑧(1), 𝑧(2), 𝑧(𝑑)) = 𝑧′𝐽}.

These are all proper patterns, and by definition of the free layer (every
symbol 1 in the 𝑛-period of 𝑧′(𝑑)𝐽 yields two distinct configurations in 𝑍𝛼) we
have:

|𝑊| = 2𝛼𝑛⋅𝑛+𝑂(1).

Proof: upper bound. For 𝑛 ∈ ℕ, we overestimate the number of proper pat-
terns |𝑃 (𝑛)| by considering restrictions 𝑧′|⟦𝑛⟧ for 𝑧′ ranging in the proper
configurations of 𝑍′

𝛼. For fixed ⟨𝑖⟩𝑘1
, ⟨𝑗⟩𝑘2

and 𝑛-factor of 𝑧′(𝑑), we bound
the number of symbols 1 in 𝑧′(𝑑) by Claim 9.8:

• If 𝑖 ≤ 𝑛, the density layer of 𝑧′(𝑑) is 𝑖-periodic, and in an 𝑖-period there
are less than 𝛼𝑖 ⋅ 𝑖 + 𝑂(1) symbols 1.

• If 𝑖 > 𝑛, 𝑧′|⟦𝑛⟧ is a factor of length 𝑛 of 𝑧′, so that there are less than
𝛼𝑛 ⋅ 𝑛 + 𝑂(1) symbols 1 in its density layer 𝑧′(𝑑)|⟦𝑛⟧.

Summing over all cases of ⟨𝑖⟩𝑘1
and ⟨𝑗⟩𝑘2

over the domain ⟦𝑛⟧, and over all
possibilites of 𝑧′(𝑑)|⟦𝑛⟧ by Claim 5.5, we obtain:

𝑃(𝑛) ≤
𝑛
∑
𝑖=1

𝑖
∑
𝑘1=0

𝑛
∑
𝑗=𝑖

𝑗

∑
𝑘2=0

𝑂(𝑖2) ⋅ 2𝛼𝑖⋅𝑖+𝑂(1) +
𝑛
∑
𝑘1=0

𝑛
∑
𝑘2=0

𝑂(𝑛2) ⋅ 2𝛼𝑛⋅𝑛+𝑂(1)

≤ poly(𝑛) ⋅
𝑛
∑
𝑖=1

2𝛼𝑖⋅𝑖+𝑂(1).

Combining Lemma 9.11 with Claim 9.10, we deduce that ℎ𝐸(𝑍𝛼) = 𝛼 by
taking the limit over 𝑛 → +∞. This concludes the proof.

9.3 Sofic subshifts

In the case of sofic ℤ𝑑 subshifts, the possible set of extender entropies de-
pends of the dimension 𝑑 ∈ ℕ. In the case 𝑑 = 1, Proposition 6.5 shows that
sofic ℤ subshifts have finitely many extender sets; thus:

Proposition 9.12. For 𝑑 = 1, a sofic subshift 𝑌 ⊆ Aℤ verifies ℎ𝐸(𝑌) = 0.

In dimension 𝑑 ≥ 2, we prove a very different result: namely, sofic ℤ𝑑

subshifts and effective ℤ𝑑 subshifts have the same expressive power in terms
of extender entropies.

Theorem 9.13. For 𝑑 ≥ 2, the set of extender entropies of ℤ𝑑 sofic subshifts is
exactly [0,+∞) ∩ Π3.

As earlier, this statement is a double inclusion. Since sofic subshifts are
effective (see Proposition 3.40), Lemma 9.3 yields:

Lemma 9.14. Let 𝑌 ⊆ Aℤ𝑑 be a sofic subshift. Then ℎ𝐸(𝑌) ∈ [0,+∞) ∩ Π3.

The rest of this section is dedicated to the converse statement. By Corol-
lary 8.21, we reduce to the case of ℤ2 subshifts and are left with proving the
following:

Lemma 9.15. For any real number 𝛼 ∈ [0,+∞) ∩ Π3, there exists a sofic ℤ2

subshift 𝑌𝛼 such that ℎ𝐸(𝑌𝛼) = 𝛼.

Draft: June 5, 2025 at 14:45.

76 9 Characterizations of extender entropies

82We abuse notations and consider 𝑍′
𝛼 ×

{0, 1}ℤ2 as a subshift on four layers by the
classical isomorphism (𝑆1 × ⋯ × 𝑆𝑖) ×
𝑆𝑖+1 ≃ 𝑆1 ×⋯× 𝑆𝑖+1.

The following sections are dedicated to proving Lemma 9.15 by providing
an explicit construction of such a ℤ2 sofic subshift 𝑌𝛼. Similarly to the ef-
fective case on ℤ, let us fix 𝛼 ∈ Π3 (we reduce to the case 0 ≤ 𝛼 ≤ 1, since
extender entropy is additive under cartesian product by Proposition 8.23),
and fix a presentation (𝛼𝑖,𝑗)𝑖,𝑗∈ℕ2 of 𝛼, that is a recursively enumerable fam-
ily of Π1 real numbers such that 𝛼 = inf𝑖∈ℕ sup𝑗∈ℕ 𝛼𝑖,𝑗. We assume that
0 ≤ 𝛼𝑖,𝑗 ≤ 1 for all 𝑖, 𝑗 ∈ ℕ, and by Proposition 4.20, we assume that the fam-
ily (𝛼𝑖,𝑗)𝑖,𝑗∈ℕ2 satisfies some monotonicity properties: for all 𝑖 ∈ ℕ, (𝑎𝑖,𝑗)𝑗∈ℕ
is weakly increasing towards some 𝛼𝑖 ∈ [0, 1] ∩ Σ2; and the sequence (𝛼𝑖)𝑖∈ℕ
is weakly decreasing towards 𝛼.

9.3.1 The subshift 𝑌 𝑓
𝛼 : lifting the previous construction

Before we begin the construction itself, it is interesting to consider the naive
generalization of our ℤ construction to ℤ2. By lifting the subshift 𝑍′

𝛼 of the
previous proof periodically from ℤ to ℤ2 and adding free bits, we obtain the
subshift82:

𝑌 𝑓
𝛼 = {(𝑦(1)⇑, 𝑦(2)⇑, 𝑦(𝑑)⇑, 𝑦(𝑓)) ∈ 𝐿⇑

1 ×𝐿⇑
2 ×𝐿⇑

𝑑 ×{ , 𝑏, 𝑑}ℤ2 ∶ 𝜋𝑠(𝑦(𝑓)) = 𝑦(𝑑)⇑}.

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1
1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 1

Figure 9.2: Sketch of a proper configuration of 𝑌 𝑓
𝛼 : 𝑧(1) = ⟨15⟩11 and 𝑧

(𝑑) is obtained from the Toeplitz encoding T(𝛽) for 𝛽 = 5
8 = 0.101(2).

We highlight with colored hatched squares the areas of fundamental domain ⟦15⟧2 which periodize the free bits.

The arguments of the previous proof generalize so that enforcing proper
configurations to have a strongly periodic free layer

{𝑦 ∈ 𝑌 𝑓
𝛼 ∶ 𝑦(1) = ⟨𝑖⟩𝑘1

∧ 𝑦(2) = ⟨𝑗⟩𝑘2
⟹ 𝑦(𝑓) is ⟦𝑖⟧2-biperiodic}

creates a ℤ2 subshift of extender entropy 𝛼. Unfortunately, such a subshift
cannot be sofic if 𝛼 > 0 by the counting argument presented in Proposi-
tion 7.1: among proper configurations, there exists 2𝛼⋅𝑖2+𝑂(𝑖) distinct pat-
terns of domain ⟦𝑖⟧2 and only 2𝑂(𝑖) borders of such patterns; yet, exchanging
patterns is impossible because of the periodicity of the free layer.
Thus, let us consider once again a proper configuration 𝑦′ ∈ 𝑌 𝑓

𝛼 such that
𝑦(1) = ⟨𝑖⟩𝑘1

. Instead of relying on the periodicity of the free layer, we intro-
duce in the next section another construction to generate distinct extender
sets for distinct possible sets of free bits completing 𝑦′ over the domain ⟦𝑖⟧2.

Draft: June 5, 2025 at 14:45.

9.3 Sofic subshifts 77

⋄

Figure 9.3: A typical configuration of 𝑌⋄.

9.3.2 Marking bits and positions in configurations

To solve the aforementioned issue, we borrow the main idea of Example 8.5:
instead of periodizing the whole square of domain ⟦𝑖⟧2 to enforce distinct
extender sets for proper configurations 𝑦 ∈ 𝑌 𝑓

𝛼 such that 𝑦(1) = ⟨𝑖⟩𝑘1
, it is

enough to non-deterministically pick and periodize one position inside the
square ⟦𝑖⟧2.
More formally, consider the alphabet { , ⋄}. We denote by [𝑚1,𝑚2] the

configuration containing a single symbol ⋄ at position (𝑚1,𝑚2) ∈ ℤ2, and
symbols at every other position 𝑝 ≠ (𝑚1,𝑚2). We say that the symbol ⋄ is
the marker of the configuration.
Given a configuration 𝑥 = [𝑚1,𝑚2] and an integer 𝑖 ∈ ℕ, we say that a

position 𝑝 ∈ ℤ2 is marked if 𝑝 ∈ (𝑚1 + 𝑖ℤ,𝑚2 + 𝑖ℤ). Notice, in particular,
that many marked positions 𝑝 ∈ ℤ2 satisfy 𝑥𝑝 = .
The subshift generated by all configurations [𝑚1,𝑚2] is:

𝑌⋄ = {[𝑚1,𝑚2] ∶ (𝑚1,𝑚2) ∈ ℤ2} ∪ [∞] ,

where [∞] = ℤ2 is the whole blank configuration, which appears in 𝑌⋄ as
the limit configuration of all the [𝑚1,𝑚2].

9.3.3 The subshift 𝑌𝛼

Considering the following five layers:
• Lifted layers: we define the first, second and density layers to be
respectively 𝐿⇑

1, 𝐿
⇑
2 and 𝐿

⇑
𝑑, where 𝐿1, 𝐿2 and 𝐿𝑑 are the first, second

and density layers of the subshift 𝑍′
𝛼 defined in the previous proof;

• Marker layer: we set𝐿𝑚 = 𝑌⋄ tomark positions 𝑝 ∈ (𝑚1+𝑖ℤ,𝑚2+𝑖ℤ);
• Free layer: we define 𝐿𝑓 = { , 𝑏, 𝑑}ℤ2 and still use the synchronizing
map 𝜋𝑠 ∶ { , 𝑏, 𝑑} → {0, 1} of the previous proof;

we define the subshift 𝑌𝛼 as:

𝑌𝛼 = {(𝑧(1)⇑, 𝑧(2)⇑, 𝑧(𝑑)⇑, 𝑦(𝑚), 𝑦(𝑓)) ∈ 𝐿⇑
1 × 𝐿⇑

2 × 𝐿⇑
𝑑 × 𝑌⋄ × { , 𝑏, 𝑑}ℤ2 ∶

𝑧(2) ∈ ⟨∞⟩ , 𝜋𝑠(𝑦(𝑓)) = 𝑧(𝑑)⇑}

∪ {(𝑧(1)⇑, 𝑧(2)⇑, 𝑧(𝑑)⇑, 𝑦(𝑚), 𝑦(𝑓)) ∈ 𝐿⇑
1 × 𝐿⇑

2 × 𝐿⇑
𝑑 × 𝑌⋄ × { , 𝑏, 𝑑}ℤ2 ∶ ∃𝑖 ∈ ℕ, ∃𝑗 ≥ 𝑖, ∃𝑘1, 𝑘2

𝑧(1) = ⟨𝑖⟩𝑘1
, 𝑧(2) = ⟨𝑗⟩𝑘2

, 𝜋𝑠(𝑦(𝑓)) = 𝑧(𝑑)⇑, ∃𝛽 ≤ 𝛼𝑖,𝑗 ∶ 𝑧(𝑑)𝑝+𝑘1
= 𝑇(𝛽)𝑝 mod 𝑖

and ∀(𝑚1,𝑚2) ∈ ℤ2, (𝑦(𝑚) = [𝑚1,𝑚2] ⟺ 𝑦(𝑓)|(𝑚1+𝑖ℤ)×(𝑚2+𝑖ℤ) is constant)}.

The main difference between 𝑌 𝑓
𝛼 and 𝑌𝛼 is that 𝑌𝛼 does not periodize whole

⟦𝑖⟧2 squares, but only free bits at positions marked by the marker layer.
Once again, we call proper the configurations 𝑦 = (𝑧(1)⇑, 𝑧(2)⇑, ⋅ , ⋅ , ⋅) ∈ 𝑌𝛼

such that 𝑧(1) = ⟨𝑖⟩𝑘1
and 𝑧(2) = ⟨𝑗⟩𝑘2

for some 𝑖, 𝑗 ∈ ℕ with 𝑗 ≥ 𝑖; and
degenerate the configurations (𝑧(1)⇑, 𝑧(2)⇑, ⋅ , ⋅ , ⋅) ∈ 𝑌𝛼 such that 𝑦(2) ∈ ⟨∞⟩.
Among patterns of L(𝑌𝛼), we call proper the patterns that can be extended
into a proper configurations; and degenerate the patterns that can only be
extended into degenerate configurations. Finally, we say that two patterns
𝑤,𝑤′ ∈ L𝐷(𝑌𝛼) over the same domain 𝐷 ⊆ ℤ2 are similar if they are equal
on their first four layers, i.e. 𝜋𝐿⇑

1×𝐿⇑
2×𝐿⇑

𝑑×𝐿𝑚
(𝑤) = 𝜋𝐿⇑

1×𝐿⇑
2×𝐿⇑

𝑑×𝐿𝑚
(𝑤′).

Claim 9.16. Denote 𝐷𝐸(𝑛1, 𝑛2) = {𝐸𝑌𝛼
(𝑤)∶ 𝑤 ∈ L⟦𝑛1,𝑛2⟧(𝑌𝛼) degenerate}

the extender sets of degenerate patterns of support ⟦𝑛1, 𝑛2⟧. Then, we have
|𝐷𝐸(𝑛1, 𝑛2)| = 𝑂(𝑛3

1 ⋅ 𝑛2
2).

Proof. As there is no restriction on the density (nor the free) layer of degener-
ate configurations, any two similar degenerate patterns 𝑤,𝑤′ ∈ L⟦𝑛1,𝑛2⟧(𝑌𝛼)
verify 𝐸𝑌𝛼

(𝑤) = 𝐸𝑌𝛼
(𝑤′). We are left with counting the number of possi-

bilites for the first, second, and marker layer of such patterns.
Draft: June 5, 2025 at 14:45.

78 9 Characterizations of extender entropies

83With our defintions, if 𝑝 = (𝑝1, 𝑝2) ∈
ℤ2, then 𝑝1 is the abscissa and 𝑝2 the or-
dinate of 𝑝, i.e. its horizontal and vertical
coordinates respectively.

84 It is actually important that only
(𝑝1, 𝑝2) is marked in ⟦𝑛1, 𝑛2⟧. Indeed, if
(𝑚1 +𝑁ℤ,𝑚2 +𝑛ℤ) intersects ⟦𝑛1, 𝑛2⟧
in two positions, then these positions can
only be marked if they bear the same free
bit in𝑤(𝑓).

85 Among many other conditions, marked
positions must be among the period posi-
tions of 𝑦(𝑓)|⟦𝑛1,𝑛2⟧…

Unfortunately, an analog of Claim 9.10 does not hold here, since not all
proper patterns generate distinct extender sets. Instead, we have:

Claim 9.17. Two similar proper patterns 𝑤,𝑤′ ∈ L⟦𝑛1,𝑛2⟧(𝑌𝛼) have distinct
extender sets if and only if there exists a proper configuration 𝑦 that extends𝑤 and
whose marker layer 𝑦(𝑚) marks a position 𝑝 ∈ ⟦𝑛1, 𝑛2⟧ such that 𝑤

(𝑓)
𝑝 ≠ 𝑤′(𝑓)

𝑝 .

Proof. Let 𝑤 ∈ L⟦𝑛1,𝑛2⟧(𝑌𝛼) be a proper pattern, and let 𝑦 be a proper config-
uration that extends 𝑤 with 𝑦(𝑚) = [𝑚1,𝑚2] for𝑚1,𝑚2 ∈ ℤ. Let us denote
𝑦(1) = ⟨𝑖⟩ ⇑

𝑘1
. Since 𝑦(𝑓)|(𝑚1+𝑖ℤ)×(𝑚2+𝑖ℤ) is constant, the value of 𝑤(𝑓) in posi-

tions marked by 𝑦(𝑚) is entirely determined by 𝑦|ℤ2∖⟦𝑛1,𝑛2⟧: in particular, any
pattern 𝑤′ such that 𝑦|ℤ2∖⟦𝑛1,𝑛2⟧ ∈ 𝐸𝑌𝛼

(𝑤′) must verify 𝑤′(𝑓)
𝑝 = 𝑤(𝑓)

𝑝 if 𝑝 is
marked in 𝑦(𝑚).

We will not explicitely state the conditions on which a position can be
marked in an extending configuration of a given proper pattern (such condi-
tions can be quite complicated: for example, if two symbols ∗ appear on the
first layer, then 𝑖 is known and marked positions are among the 𝑖-periodic
free bits…).
Instead, we will just mention the following fact: in a given proper config-

uration 𝑦 such that 𝑦(1) = ⟨𝑖⟩ ⇑
𝑘1
and 𝑦(𝑚) ≠ [∞], exactly one position per 𝑖 × 𝑖

square is marked. Thus, when fixing the first four layers of a configuration
and ranging in the possible assigments of its free layer, there are 𝑖2 distinct
sets of marked positions, and the number of extender sets they generate
depends only on the number of symbols 1 in 𝑦(𝑑)|⟦𝑖×𝑖⟧.
With this inmind,we can prove the following bounds (that share a striking

resemblance with the effective ℤ case):

Lemma 9.18. Let 𝑃𝐸(𝑛1, 𝑛2) = {𝐸𝑌𝛼
(𝑤)∶ 𝑤 ∈ L⟦𝑛1,𝑛2⟧(𝑌𝛼) proper}. Then:83

2𝛼max(𝑛1,𝑛2)⋅𝑛1𝑛2+𝑂(𝑛2) ≤ 𝑃𝐸(𝑛1, 𝑛2) ≤ poly(𝑛1, 𝑛2) ⋅
𝑛1

∑
𝑖=1

2𝛼𝑖⋅ 𝑖𝑛2+𝑂(𝑛2)

Proof: lower bound. Let us fix 𝑛1, 𝑛2 ∈ ℕ, and denote 𝑁 = max(𝑛1, 𝑛2).
Following the proof of the effective ℤ case, there exists a configuration
𝑧′ = (⟨𝑁⟩0 , 𝑧

′(2), 𝑧′(𝑑)) ∈ 𝑍′
𝛼 such that the number of symbols 1 in the den-

sity layer 𝑧′(𝑑)|⟦𝑛1⟧ is at least 𝛼𝑁 ⋅ 𝑛1 +𝑂(1). Let us consider the patterns:

𝑊 = {𝑦|⟦𝑛1,𝑛2⟧ ∶ 𝑦 ∈ 𝑌𝛼, (𝑦(1), 𝑦(2), 𝑦(𝑑)) = (𝑧′(1), 𝑧′(2), 𝑧′(𝑑))⇑

and 𝑦(𝑚) = [𝑚1,𝑚2] for (𝑚1,𝑚2) ∉ ⟦𝑛1, 𝑛2⟧} ∶

these are all similar proper patterns. For 𝑤,𝑤′ ∈ 𝑊, there exists some posi-
tion 𝑝 = (𝑝1, 𝑝2) ∈ ⟦𝑛1, 𝑛2⟧ such that 𝑤

(𝑓)
𝑝 ≠ 𝑤′(𝑓)

𝑝 . Since the configuration
𝑦⋄ = [𝑁 + 𝑝1,𝑁 + 𝑝2]marks (𝑝1, 𝑝2) (and only84 (𝑝1, 𝑝2) in ⟦𝑛1, 𝑛2⟧) and ver-
ifies 𝑦⋄|⟦𝑛1,𝑛2⟧ = ⟦𝑛1,𝑛2⟧, there exists a proper configuration that marks 𝑝
and extends 𝑤: thus, 𝑤 and 𝑤′ have distinct extender sets.

Proof: upper bound. Weproceed as inLemma9.11: for a fixed domain ⟦𝑛1, 𝑛2⟧,
we overestimate the number of extenders of proper patterns by considering
restrictions 𝑦|⟦𝑛1,𝑛2⟧ for 𝑦 ranging the in the proper configurations of 𝑌𝛼.
For fixed 𝑦(1) = ⟨𝑖⟩ ⇑

𝑘1
, 𝑦(2) and 𝑦(𝑑), let us bound the number of extender sets

generated by all the assigments of free bits.
As mentioned above, these only depend on the number of symbols 1

in 𝑦(𝑑)|⟦𝑖,𝑖⟧. Thus, we need to consider how ⟦𝑖, 𝑖⟧ and ⟦𝑛1, 𝑛2⟧ intersect. If
⟦𝑛1, 𝑛2⟧ ⊆ ⟦𝑖, 𝑖⟧, then every position could be marked by a well-chosen ex-
tending configuration. If ⟦𝑖, 𝑖⟧ is contained within ⟦𝑛1, 𝑛2⟧, only a subset of
positions of ⟦𝑖, 𝑖⟧ could realistically be marked85. Instead of pursuing this

Draft: June 5, 2025 at 14:45.

9.3 Sofic subshifts 79

86 The subshift𝑍′
𝛼 defined in the proof of

Lemma 9.4.

Figure 9.4: A typical configuration of the
square grid subshift 𝑌grid.
87 The tiles , and define, by enforc-
ing the continuity of black lines, a local
subshift whose configurations are irregu-
lar grids; to enforce regular square grids,
wemake each cross send drawdiagonals
in an SFT cover (since diagonals can only
cross black lines through other crosses ,
the grids become regular).

∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗

∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗

∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗

∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗

∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗

Figure 9.5: A typical configuration of the
subshift 𝑌grid,∗.
88 Indeed, force that exactly a single sym-
bol ∗ can appear between two columns.

case disjunction any further, we avoid the difficulty entirely by generously
overestimating which positions can be marked: we will consider that all the
free bits assignments over ⟦𝑖, 𝑛2⟧ generate distinct extender sets. Since by
Claim 9.7,

• If 𝑖 ≤ 𝑛1, the restriction of the density layer 𝑦(𝑑) to the rectangle ⟦𝑖, 𝑛1⟧
contains less than 𝛼𝑖 ⋅ 𝑖𝑛2 +𝑂(𝑛2) symbols 1.

• If 𝑖 ≥ 𝑛1, the restriction of the density layer 𝑦(𝑑) to the rectangle
⟦𝑛1, 𝑛2⟧ contains less than 𝛼𝑛1

⋅ 𝑛1𝑛2 +𝑂(𝑛2) symbols 1;

when summing over all cases of ⟨𝑖⟩ ⇑
𝑘1
, ⟨𝑗⟩ ⇑

𝑘2
, all possibilities of 𝑦(𝑑) byClaim5.5,

not forgetting to account for the possible presence of ⋄ in 𝑦(𝑑)|⟦𝑛1,𝑛2⟧, and
generously overestimating which positions can be marked, we conclude that:

𝑃𝐸(𝑛1, 𝑛2) ≤
𝑛1

∑
𝑖=1

𝑖
∑
𝑘1=0

𝑛1

∑
𝑗=𝑖

𝑗

∑
𝑘2=0

𝑂(𝑖2) ⋅ (𝑂(𝑛1𝑛2) + 2𝛼𝑖⋅ 𝑖𝑛2+𝑂(𝑛2))

+
𝑛1

∑
𝑘1=0

𝑛1

∑
𝑘2=0

𝑂(𝑛2) ⋅ (𝑂(𝑛1, 𝑛2) + 2𝛼𝑛1⋅𝑛1𝑛2+𝑂(𝑛2))

≤ poly(𝑛1, 𝑛2)
𝑛1

∑
𝑖=1

2𝛼𝑖⋅ 𝑖𝑛2+𝑂(𝑛2)

Combining Lemma 9.18 with Claims 9.16 and 9.17, we deduce that
ℎ𝐸(𝑌𝛼) = 𝛼 by taking the limit over 𝑛1 = 𝑛2 = 𝑛 → +∞. Thus, we are left
with proving:

Claim 9.19. The ℤ2 subshift 𝑌𝛼 is a sofic subshift.

The proof is very standard and unsurprising. We include here a sketch of
the argument for the sake of completeness:

Sketch of proof. Lifting the ℤ effective subshift86 𝑍′
𝛼 to ℤ2 and following

Proposition 3.44, we nearly obtain that 𝑌𝛼 is a sofic subshift. The only
remaining hiccup lies in periodizing free bits in proper configurations, and
in proper configurations only.

To periodize free bits at coordinates (𝑚1+𝑖ℤ,𝑚2+𝑖ℤ), we introduce theℤ2

grid subshift 𝑌grid on the alphabet { , , }, which is defined as the closure
of all the square grid configurations (see Figure 9.4). The subshift 𝑌grid is
sofic87. To synchronise it with the first layer𝐿⇑

1, we define 𝑌grid,∗ ⊆ 𝐿⇑
1×𝑌grid

the set of configurations (𝑥(1),⇑, 𝑥(𝑔)) such that 𝑥(1) = ⟨𝑖⟩𝑘1
if and only if 𝑥(𝑔)

has mesh 𝑖 × 𝑖 (see Figure 9.5). The subshift 𝑌grid,∗ is also sofic88.

Now, let us prove that 𝑌𝛼 is a sofic subshift. We begin by adding a Proper
Layer to the ℤ effective subshift 𝑍′

𝛼, which is set to be pℤ in proper configura-
tions of 𝑍′

𝛼, and can be either dℤ or pℤ in degenerate configurations. Denoting
by 𝑍″

𝛼 the resulting ℤ effective subshift, we use Proposition 3.44 to lift it
sofically to ℤ2 and define:

𝑌 ′
𝛼 = {(𝑧(1)⇑, 𝑧(2)⇑, 𝑧(𝑑)⇑, 𝑧(𝑝)⇑, 𝑦(⋄), 𝑦(𝑔), 𝑦(𝑓)) ∈ 𝑍′′⇑

𝛼 × 𝑌⋄ × 𝑌grid × {0, 1, }ℤ2 ∶
(𝑧(1)⇑, 𝑦(𝑔)) ∈ 𝑌grid,∗, 𝜋𝑠(𝑦(𝑓)) = 𝑧(𝑑)⇑,

∀p ∈ ℤ2, 𝑦(⋄)p = ⋄ ⟹ 𝑦(𝑔)p = ,

and ∃𝑏 ∈ {0, 1, }, ∀p ∈ ℤ2, 𝑧(𝑝) = pℤ ∧ 𝑦(𝑔)p = ⟹ 𝑦(𝑓)p = 𝑏}

In other words, in 𝑌 ′
𝛼 , the marker of the marker layer must appear on top of

a cross of the grid layer; and free bits along the grid are periodized only
when the proper layer contains the symbol p.
We then claim that 𝑌𝛼 is a factor of 𝑌 ′

𝛼 by just erasing the unecessary layers:
indeed, we just have to check the periodicity of the free bits. In 𝑌 ′

𝛼 , both

Draft: June 5, 2025 at 14:45.

80 9 Characterizations of extender entropies

[Kůr03] Kůrka, Topological and symbolic
dynamics.

cases 𝑧(𝑝) = pℤ and 𝑧(𝑝) = dℤ are possible when 𝑧(2) ∈ ⟨∞⟩, so that, when
projecting, the periodicity condition enforced on some free bits of 𝑦(𝑓) is lost.
On the other hand, if 𝑧1 = ⟨𝑖⟩𝑘1

and 𝑧(2) = ⟨𝑗⟩𝑘2
, then 𝑦(𝑝) is forced to be pℤ,

so that the periodicity condition is kept when projecting. Since 𝑌 ′
𝛼 is sofic,

this concludes the proof.

9.4 Computable subshifts

Theorem 9.20. For 𝑑 ≥ 1, the set of extender entropies of ℤ𝑑 computable
subshifts is exactly [0,+∞) ∩ Π2.

Since computable subshifts have Π0
0 language by definition, we obtain the

first inclusion:

Lemma 9.21. Let𝑋 ⊆ Aℤ𝑑 be computable. Then ℎ𝐸(𝑋) ∈ [0,+∞) ∩ Π2.

Proof. By definition, 𝑋 being computable implies that L(𝑋) is a Π0
0 set.

Following the argument of Lemma 9.3, we conclude that ℎ𝐸(𝑋) ∈ Π2.

Lemma 9.22. Let 𝛼 ∈ [0,+∞)∩Π2. There exists a ℤ𝑑 computable subshift𝑋𝛼
such that ℎ𝐸(𝑋𝛼) = 𝛼. If 𝑑 ≥ 2,𝑋𝛼 can even be taken sofic.

Proof. Fix 𝛼 ∈ [0,+∞)∩Π2 defined by 𝛼 = inf𝑖∈ℕ sup𝑗∈ℕ 𝛼𝑖,𝑗 for (𝛼𝑖,𝑗)(𝑖,𝑗)∈ℕ2

a computable sequence of rational numbers. Considering the subshifts𝑋𝛼
and 𝑌𝛼 that were respectively constructed in the proofs of Lemma 9.4 and
Lemma 9.15, we claim that, since 𝛼 ∈ Π2, the subshifts 𝑍𝛼 and 𝑌𝛼 are
computable subshifts.
Indeed, the density layer of 𝑍𝛼 (resp. 𝑌𝛼) is made of factors of Toeplitz

words 𝑇 (𝛽) for 𝛽 ≤ 𝛼𝑖,𝑗: if 𝛼𝑖,𝑗 is rational, the sets {𝑇 (𝛽) ∶ 𝛽 ≤ 𝛼𝑖,𝑗} are all
uniformly decidable, so that the density layers of 𝑍𝛼 and 𝑌𝛼 (and thus, the
subshifts themselves) are in turn computable.

9.5 Minimal subshifts

In the case ofminimal subshift, Proposition 8.13 shows that distinct patterns
yield distinct extender sets. Thus:

Lemma 9.23. Let𝑋 ⊆ Aℤ𝑑 be a minimal subshift. Then ℎ𝐸(𝑋) = ℎ(𝑋).

Proof. By Proposition 8.13, we know that there is exactly one extender set
per pattern in 𝑋, i.e that |𝐸𝑋(⟦𝑛⟧𝑑)| = |L⟦𝑛⟧𝑑(𝑋)|. By taking the limit, we
conclude that ℎ𝐸(𝑋) = ℎ(𝑋).

In terms of extender entropy of minimal subshifts, we deduce:

Proposition 9.24. Let 𝑌 ⊆ Aℤ𝑑 be a minimal sofic subshift. Then ℎ𝐸(𝑌) = 0.

Proposition 9.25. For 𝑑 ≥ 1, the set of extender entropies of minimal ℤ𝑑

effective subshifts is [0,+∞) ∩ Π1.

Indeed:
• Minimal sofic subshifts have entropy zero (Proposition 3.49).
• Effective subshifts have Π1 entropy; conversely, for every real number
𝛼 ∈ [0,+∞)∩Π1, there exists aminimal effective subshift𝑍𝛼 such that
ℎ(𝑍𝛼) = 𝛼: for example, take the subshift from the proof of [Kůr03,
Theorem 4.77] with a computable sequence of integers (𝑘𝑛)𝑛∈ℕ.

Draft: June 5, 2025 at 14:45.

9.6 Mixing subshifts 81

9.6 Mixing subshifts

All our previous examples rely on very non-mixing conditions to gener-
ate exponentially many extender sets. We prove that this is, in fact, not a
restriction.

Theorem 9.26. For 𝑑 ≥ 1, the set of extender entropies of 1-block-gluing
effective ℤ𝑑 subshifts is [0,+∞) ∩ Π3.

This is a consequence of the following lemma: adding a safe-symbol # to
the alphabetA creates mixingness and preserves extender entropies. More
precisely, letR⊛𝑑 denote the set of (potentially infinite) hyperrectangles 𝑅
such that 𝑅 ⊆ ℤ𝑑. Given a subshift 𝑋 ⊆ Aℤ𝑑 , for A# = A ∪ {#} we define
the subshift 𝑋# ⊆ Aℤ𝑑

as the set of (potentially infinite) non-contiguous
rectangular patterns of𝑋 over a background of symbols #:

𝑋# = {𝑥 ∈ Aℤ𝑑

∶ ∃𝐽, ∃(𝑅𝑗)𝑗∈𝐽 ∈ (R⊛𝑑)𝐽, 𝑑(𝑅𝑗1 , 𝑅𝑗2) ≥ 1 if 𝑗1 ≠ 𝑗2,

⊔
𝑗∈𝐽

𝑅𝑗 = {i ∈ ℤ𝑑 ∶ 𝑥i ≠ #} and ∀𝑗 ∈ 𝐽, 𝑥|𝑅𝑗
∈ L(𝑋)}.

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

Figure 9.6: Layout of a configuration in𝑋#: independant rectangles float
over a background of # symbols.

Lemma 9.27. Let 𝑋 ⊆ Aℤ𝑑 be an effective subshift. The subshift 𝑋# ⊆ Aℤ𝑑

#

defined above is 1-block-gluing, effective, and verifies ℎ𝐸(𝑋#) = ℎ𝐸(𝑋).

Proof. Let 𝑋 ⊆ Aℤ𝑑 . The subshift 𝑋# is effective since the set of finite
patterns in L(𝑋) is Π0

1 (see Proposition 3.45). It is 1-block-gluing, since for
any two rectangles𝑅,𝑅′ ∈ R⊛𝑑 such that 𝑑(𝑅,𝑅′) ≥ 1 and any two patterns
𝑤 ∈ L𝑅(𝑋#), 𝑤′ ∈ L𝑅′(𝑋#), the configuration 𝑥 ∈ Aℤ𝑑

defined as follows
is valid in 𝑋#: 𝑥i = 𝑤i if i ∈ 𝑅, 𝑥i = 𝑤′

i if 𝑖 ∈ 𝑅′, or 𝑥i = # otherwise. To
complete this proof, we are left with computing the extender sets of𝑋#.
For a fixed domain𝐷 ⊆ ℤ𝑑, assume that two patterns 𝑤,𝑤′ ∈ A𝐷 verify

𝐸𝑋(𝑤) ≠ 𝐸𝑋(𝑤′): by definition, there exists some partial configuration
𝑥 ∈ Aℤ𝑑∖𝐷 that extends either 𝑤 or 𝑤′ but not the other. Since the same
configuration still exists in𝑋#, and still extends only one pattern among 𝑤
and 𝑤′, we obtain 𝐸𝐸#

(𝑤) ≠ 𝐸𝑋(𝐸#). In particular, ℎ𝐸(𝑋) ≤ ℎ𝐸(𝑋#).

Reciprocally, let us consider the extender sets of patterns in 𝑋#. Given
a domain ⟦𝑛⟧𝑑 and a pattern 𝑤 ∈ L⟦𝑛⟧𝑑(𝑋#), we define the geometry of 𝑤
(denoted𝐺(𝑤)) as the set ofmaximal non-adjacent hyperrectangles𝑅 ∈ R⊛𝑑

(i.e. 𝑑(𝑅,𝑅′) ≥ 1 for distinct 𝑅,𝑅′ ∈ 𝐺(𝑤)) that cover the non-# symbols
of 𝑤 (i.e. ⊔𝑅∈𝐺(𝑤) 𝑅 = {i ∈ ⟦𝑛⟧𝑑 ∶ 𝑤i ≠ #}). Considering the border geometry
𝜕𝐺(𝑤) defined by

𝜕𝐺(𝑤) = {𝑅 ∈ 𝐺(𝑤)∶ 𝑅 ∩ 𝜕1(⟦𝑛⟧𝑑) ≠ ∅},

Draft: June 5, 2025 at 14:45.

82 9 Characterizations of extender entropies

89 𝑌 is still sofic, has the same extender
entropy since it can be computed along
any sequence of hyperrectangles; but now
has a reduced “density” of information.

the extender set𝐸𝑋#
(𝑤) in𝑋# is entirely determined by the border geometry

𝜕𝐺(𝑤) and the extender sets {𝐸𝑋(𝑤|𝑅) ∶ 𝑅 ∈ 𝜕𝐺(𝑤)} in𝑋.
From these considerations, we bound the number of extender sets in𝑋#.

By definition of the extender entropy of 𝑋, for 𝜀 > 0, there exists some
𝑁 ∈ ℕ𝑑 such that, for all 𝑛 ∈ ℕ,

(𝑛1,… , 𝑛𝑑) ≥ (𝑁1,… ,𝑁𝑑) ⟹ log |𝐸𝑋(⟦𝑛1,… , 𝑛𝑑⟧)| ≤ (ℎ(𝑋) + 𝜀) 𝑛1⋯𝑛𝑑.

Thus, for any hyperrectangle 𝑅 ⊆ ⟦𝑛⟧𝑑 of size 𝑟1 × ⋯ × 𝑟𝑑 (and denoting
‖𝑅‖ = 𝑟1 ⋯𝑟𝑑 its volume), two cases arise:

• Either 𝑟𝑖 ≥ 𝑁𝑖 for all 1 ≤ 𝑖 ≤ 𝑑 (we denote R𝐿 this set of large
hyperrectangles): in this case, we bound the number of extender sets
as follows: log |𝐸𝑋(𝑅)| ≤ (ℎ(𝑋) + 𝜀) ‖𝑅‖.

• Or there exists some 1 ≤ 𝑖 ≤ 𝑑 such that 𝑟𝑖 < 𝑁𝑖 (we denoteR𝑆 this
set of small hyperrectangles): in this case, we bound log |𝐸𝑋|(𝑅) with
log |𝐸𝑋|(𝑅) ≤ log |A#| ⋅ ‖𝑅‖.

For a fixed border geometry 𝜕𝐺, we have:

∏
𝑅∈𝜕𝐺∩R𝑆

|𝐸#(𝑅)| ≤ |A#|
∑𝑅∈𝜕𝐺∩R𝐿

‖𝑅‖

≤ |A#|∑
𝑑
𝑖=1 2⋅𝑛

𝑑−1⋅𝑁𝑖 ;

∏
𝑅∈𝜕𝐺∩R𝐿

|𝐸#(𝑅)| ≤ 2(ℎ(𝑋)+𝜀)⋅∑𝑅∈𝜕𝐺∩R𝐿
‖𝑅‖

≤ 2(ℎ(𝑋)+𝜀)⋅ 𝑛𝑑 .

Summing over all geometries, we obtain:

|𝐸𝑋(⟦𝑛1,… , 𝑛𝑑⟧)| ≤ ∑
𝜕𝐺=𝜕𝐺(𝑤)∶

𝑤∈L⟦𝑛1,…,𝑛𝑑⟧(𝑋#)

∏
𝑅∈𝜕𝐺∩R𝑆

|𝐸#(𝑅)| ⋅ ∏
𝑅∈𝜕𝐺∩R𝐿

|𝐸#(𝑅)|

≤ ∑
𝜕𝐺=𝜕𝐺(𝑤)∶

𝑤∈L⟦𝑛1,…,𝑛𝑑⟧(𝑋#)

|A#|∑
𝑑
𝑖=1 2⋅𝑛

𝑑−1⋅𝑁𝑖 ⋅ 2(ℎ(𝑋)+𝜀)⋅𝑛𝑑 .

For a given pattern 𝑤 ∈ L⟦𝑛⟧𝑑(𝑋#), the number of rectangles in 𝜕𝐺(𝑤) is
bounded by the hypersurface of ⟦𝑛⟧𝑑, which is 2𝑑 ⋅ 𝑛𝑑−1. Furthermore, a
𝑑-dimensional hyperrectangle in ⟦𝑛⟧𝑑 is entirely determined by two points.
Thus, the number of possible border geometries is bounded by:

|{𝜕𝐺(𝑤)∶ 𝑤 ∈ L⟦𝑛⟧𝑑(𝑋#)}| ≤ (𝑂(𝑛2𝑑))2𝑑⋅𝑛𝑑−1 ≤ 2𝑂(𝑛𝑑−1⋅log𝑛).

Plugging all these equations together leads to:

log |𝐸𝑋#
(⟦𝑛⟧𝑑)| ≤ (ℎ(𝑋) + 𝜀) ⋅ 𝑛𝑑 +𝑂(𝑛𝑑−1 ⋅ log𝑛)

By Proposition 8.16, ℎ𝐸(𝑋#) can be computed using any sequence of hyper-
rectangles. In particular, dividing by 𝑛𝑑 in the previous inequality and taking
the limit on 𝑛, we obtain that ℎ𝐸(𝑋#) ≤ ℎ(𝑋) + 𝜀. Since 𝜀 was arbitrary, we
conclude the proof:

ℎ𝐸(𝑋#) ≤ ℎ(𝑋).

With a slightly more involved construction, one can prove that 1-block-
gluing ℤ𝑑 sofic subshifts realize all the sofic extender entropies:

Theorem 9.28. For 𝑑 ≥ 2, the set of extender entropies of 1-block-gluing ℤ𝑑

sofic subshifts is [0,+∞) ∩ Π3.

Sketch of proof. Let us fix 𝛼 ∈ [0,+∞) ∩ Π3, and denote by 𝑌 = 𝑌𝛼 ⊆ Aℤ2

the subshift that was built in the proof of Lemma 9.15, but restricted to

Draft: June 5, 2025 at 14:45.

9.6 Mixing subshifts 83

90 This representation is inspired by
the represention of 𝑋∗ defined in Sec-
tion 14.3.2.

configurations ⟨𝑖⟩𝑘1
and ⟨𝑗⟩𝑘2

that are powers of 2.89 Denoting C∗𝑑 ⊆ R⊛𝑑

the set of finite hypercubes 𝐶 ⊆ ℤ𝑑, define:

𝑌 ′
={𝑥 ∈ Aℤ2

∶ ∃𝐽, ∃(𝑅𝑗)𝑗∈𝐽 ∈ (R⊛2)𝐽, 𝑑(𝑅𝑗1 , 𝑅𝑗2) ≥ 1 if 𝑗1 ≠ 𝑗2,

⊔
𝑗∈𝐽

𝑅𝑗 = {i ∈ ℤ𝑑 ∶ 𝑥i ≠ #} and ∀𝑗 ∈ 𝐽, 𝑅𝑗 ∈ C∗2 ⟹ 𝑥|𝑅𝑗
∈ L(𝑌)}.

Intuitively, nonA-hyperrectangles in 𝑌 ′
can be filled with any pattern on

A; butA-hypercubes in 𝑌 ′
can only be filled with valid patterns from 𝑌.

Following the same proof, 𝑌 ′
is 1-block-gluing and ℎ𝐸(𝑌 ′

) = ℎ𝐸(𝑌):
• Since hyperrectangles𝑅 ∈ R⊛𝑑∖C∗𝑑 that are not cubic can now contain
every pattern ofA𝑅, all these new patterns belong in the same extender
class and the upper bound ℎ𝐸(𝑌 ′

) ≤ ℎ𝐸(𝑌) still holds.
• However, sinceAℤ𝑑 ⊆ 𝑌 ′

, the inequality ℎ𝐸(𝑌) ≤ ℎ𝐸(𝑌 ′
) needs to be

proved with finite hypercubic patterns of L(𝑋) instead of complete
configurations: if 𝑦(0) ∈ 𝑌 distinguishes the extender classes of two
patterns 𝑤,𝑤′ in 𝑌, then there exists some 𝑛 ∈ ℕ such that the configu-
ration 𝑦 ∈ 𝑌 ′

defined as 𝑦i = 𝑦(0)i if i ∈ ⟦−𝑛, 𝑛⟧𝑑, and 𝑦i = # otherwise,
distinguishes 𝑤 from 𝑤′ in 𝑌 ′

.
We are left with proving that 𝑌 ′

is sofic. To prove this, we apply Theo-
rem 10.11 based on the following main ideas: fixing a square domain ⟦𝑛⟧2,
values of ⟨𝑖⟩ and ⟨𝑗⟩ being powers of 2 implies that the square ⟦𝑛⟧ can only
cover polylog(𝑛)many distinct pairs (𝑖, 𝑗). Since this is the most complicated
application of Theorem 10.11 in this thesis, we recommend the reader to
warm-up to these methods by skimming through some examples in Chap-
ter 14 before doing this one.

Sketch of proof: soficity of 𝑌 ′
. The proof is written on ℤ2, but the generaliza-

tion to arbitrary ℤ𝑑 is straightforward.

Representing the subshift 𝑌 Considering the definition of the subshift
𝑌 = 𝑌𝛼 from Section 9.3.3, we represent patterns 𝑤 of domain ⟦𝑛1, 𝑛2⟧ as
tuples composed of the following information:

• About the first layer 𝑤(1):90 if no symbol ∗ appears on the layer 𝑤(1),
this field is empty. If a single column of ∗ symbols appears on 𝑤(1),
this field contains its shift 𝑘1 ∈ ⟦𝑛1⟧, defined as its horizontal position
inside 𝑤(1). If at least two columns of ∗ symbols appear on 𝑤(1), this
field contains a shift 𝑘1 ∈ ⟦𝑛1⟧ and a period 𝑖 ∈ ⟦𝑛1⟧, respectively
defined as the horizontal position of the leftmost column of symbols ∗,
and the shortest distance between two columns of symbols ∗.
If 𝑖 is not a power of 2, or if 𝑤(1) is not horizontally periodic of period
𝑖, we actually do not define a representation for 𝑤.

• About the second layer 𝑤(2): same ideas as in the first layer 𝑤(1), while
enforcing that 𝑗 ≥ 𝑖;

• About the density layer 𝑤(𝑑): as the lift of a Toeplitz word, we follow
the ideas of Example 10.8. More precisely:
– If two symbols ∗ appear in 𝑤(1), this field contains the prefix

𝑢′ ∈ {0, 1}log 𝑖 that appears (in a Toeplitz way) between two ∗
columns of 𝑤(1);

– If at most one ∗ column appears in 𝑤(1), this field contains (all
non-deterministically guessed) a sequence of bits 𝑏 ∈ {0, 1}log𝑛1

such that 𝑏ℓ denotes the parity of the positions of level ℓ among
the positions of level ℓ−1; a prefix 𝑢′ ∈ {0, 1}log𝑛1 of the sequence
embedded in the Toeplitz, consistently with 𝑤(𝑑) and 𝑏; and the
at most three positions and symbols of ⟦𝑛1⟧ that are not covered
by the positions of level ℓ ≤ log𝑛1 as determined by 𝑏;

Draft: June 5, 2025 at 14:45.

84 9 Characterizations of extender entropies

91 See Theorem 10.10

92 The pair list can, and will, contain other
elements.

– (Or, if such Toeplitz structure is clearly not possible in 𝑤(𝑑), this
field can be kept empty on the condition that 𝑤(2) contains at
most a single ∗ column)

• About the marker layer 𝑤(𝑚): if 𝑤(𝑚) contains a symbol ⋄, this field
contains its position, denotedm⋄. Otherwise, it is empty.

• About the free layer 𝑤(𝑓):
– Ifm⋄ is well-defined, this field should contain the value of the
free bit 𝑤(𝑓)

p𝑓 .

If 𝑖 and 𝑗 are both well-defined, all free bits in 𝑤(𝑓) that appear
on the grid centered on m⋄ and of mesh (𝑖, 𝑖) should have this
value; if 𝑗 is not defined, then we should remember an additional
bit telling whether all free bits in 𝑤(𝑓) that appear on the grid
centered onm⋄ and of mesh (𝑖, 𝑖) have the same value or not;

– Ifm⋄ is not defined, we should non-deterministically guess 𝑂(1)
positions, and remember these positions and the value of the free
bits from 𝑤(𝑓) at these positions.

Then, there exists an induction that has time complexity 𝑡(𝑠) = 𝑂(𝑠)
that results in the subshift 𝑌𝛼. To sketch the ideas, this induction should
merge information about the first two layers (as for𝑋∗ in Section 14.3.2),
merge information about the density layer (as in Example 10.8), and merge
information about the free layer (to ensure that either 𝑗 is undefined and the
free bits on the aforementioned grid are allowed to differ, or ensure that they
are all equal if 𝑗 is discovered “later”). Finally, if 𝑖 and 𝑗 are well-defiend, it
should check the prefix 𝑢′ about the density layer against an approximation
of 𝛼𝑖,𝑗 ∈ Π1 obtained after log log𝑛1 computation steps.

Representing the subshift𝑌 ′
To define a representation of 𝑌 ′

, remember
that the configurations drawing rectangles ofA symbols over a # background
define a sofic subshift: by embeding the symbols of a local cover inside the
representation of patterns of domain ⟦1⟧2 and the first induction step91, we
can assume – in the rest of this proof – that all patterns which are to be
represented and computed upon have the correct structure.
Then,we proceed as inTheorem14.2.Wedefine a representation function

R that associates to patterns 𝑤 of domain ⟦𝑛⟧2 a tuple composed of the
following information:

• The size 𝑛 ∈ ℕ of the domain;
• A pair list of maps (𝑖, 𝑗) ↦ 𝑢′ for 𝑖 ∈ ⟦𝑛⟧, 𝑗 ∈ ⟦𝑛⟧, and 𝑢′ ∈ {0, 1}𝑂(log𝑛)

such that: if a square appears completely in 𝑤, then 𝑖, 𝑗 and 𝑢′ are
respectively the period of the first layer, the period of the second layer,
and the prefix of the density layer, as defined by the representation
function of 𝑌 = 𝑌𝛼 defined above;92

• A corner list containing the following information about squares ap-
pearing partially inside 𝑤:
– Either a square has a single corner appearing in 𝑤, in which case
we remember the position and the orientation of this corner, and
a model of the associated pattern of 𝑌;

– Or a square has two corners appearing in 𝑤, and the distance
between these two corners is greater than 𝑛

8 : in which case we
remember the position and the orientation of these corners, and
guess a possible model of the “complete square” (that straddles
over the border of 𝑤).

– Or a square has two corners appearing in𝑤, the distance between
these two corners is greater than 𝑛

8 , and we guess that the par-
tially appearing square is actually a rectangle: in which case we

Draft: June 5, 2025 at 14:45.

9.6 Mixing subshifts 85

93 This claim is straightforward: the only
trick of this proof is the deletion of corners
at distance less than 𝑛

8 , since these are
checked by adjacent inductions induced
by the definition of inductive validity. See
Theorem 14.2 for more details.
94 Since 𝑖 and 𝑗 are powers of 2, only
log2(𝑛) distinct pairs (𝑖, 𝑗) can appear in
the pair lists of such patterns; and the
corner list has length𝑂(1), and contains
log𝑛 bits of information per item.
95 Use suitable data structures for the pair
and corner lists, such as balanced binary
trees.

remember the position and the orientation of these corners, and
remember a boolean to remember that these corners are supposed
to represent a rectangle, and prevent them from being merged
into a square.

The induction function I should then:
• Update the size to 2𝑛;
• Merge the pair lists into a single map: if a pair of maps that we want to
merge define different prefixes for the same input pair (𝑖, 𝑗), we keep
the maximal prefix (which corresponds to the binary expansion of the
larger real number);

• Merge the corner lists. If two corners list define corners that match
into a rectangle, then:
– If both subrepresentations had simulatenously guessed “rectan-
gle”, and that these corners indeed define a rectangle that is not
a square, then delete these corners;

– If both sides had simulatenously guessed “square”, and that these
corners indeed define a square, check that they guessed identical
representations of the complete square;

– Otherwise, reject the computation.
• Delete the small squares from the corner list: if two corners at distance
less than 2𝑛

8 define a square in the corner list, consider themodel of the
“complete square” that was guessed; merge the association (𝑖, 𝑗) ↦ 𝑢′

from this model with the pair list defined above (once again, only keep
the maximal prefix); and delete these corners from the corner list;

• Finally, for each pair (𝑖, 𝑗) ↦ 𝑢′ in the pair list, compute log log𝑛 steps
of an approximation of 𝛼𝑖,𝑗 ∈ Π1, and check that 𝑢′ defines a rational
number that is smaller than this approximation of 𝛼𝑖,𝑗.

• If any of these checks failed, reject the computation.Otherwise, return
the new model.

We then claim that the pair (R,I) defines the subshift 𝑌 ′
.93. SinceR de-

fines representations of length log2(𝑛) on patterns of domain ⟦𝑛⟧;94, and that
I has time complexity 𝑡(𝑠) = 𝑂(𝑠 ⋅ log 𝑠);95 we conclude by Theorem 10.11
that 𝑌 ′

is sofic.

Draft: June 5, 2025 at 14:45.

SOFICITY AND SMALL REPRESENTATIONS

Draft: June 5, 2025 at 14:45. 87

Summary 89

96 One should notice that, on ℤ, the naive
bound 22𝑂(1) on the number of sets of
borders in a cover is still a constant in-
dependant of 𝑛: which makes the dis-
tinction between deterministic and non-
deterministic communication only rele-
vant in higher dimension.

[DRS12] Durand, Romashchenko, and
Shen, “Fixed-point tile sets and their ap-
plications”.

Summary

This whole chapter is joint work with Léo Paviet Salomon and Pascal
Vanier.

Motivations We believe that the number of extender sets fails to charac-
terize soficity in dimension 𝑑 ≥ 2 because they quantify the deterministic
information communicated between patterns and their partial complemen-
tary configurations. Indeed, in a sofic subshift, the configuration 𝑤 ⋉⟦𝑛⟧𝑑 𝑥
is valid if and only if 𝑤|⟦𝑛⟧𝑑 and 𝑥|ℤ𝑑∖⟦𝑛⟧𝑑 can non-deterministically agree on a
pair of compatible borders in a local cover, which is 𝑂(𝑛𝑑−1) bits of informa-
tion. However, extender sets in sofic subshifts summarize the whole set of
possible borders of the covers of 𝑤|⟦𝑛⟧𝑑 , which turns out to be much larger96
(by the previous half of this thesis, sofic subshifts can have 2Θ(𝑛𝑑) distinct
extender sets, i.e. require Θ(𝑛𝑑) bits of deterministic communication).
In the second part of this thesis, we explore the soficity of multidimen-

sional subshifts in a non-deterministic setting. Considering patterns of fun-
damental domain ⟦𝑛⟧𝑑 in configurations as entitites in a non-deterministic
communication setting, we ask how much non-deterministic information
needs to be communicated between adjacent ⟦𝑛⟧𝑑 patterns to verify the
validity of a configuration.

Summary of results We introduce the notion of inductive representations in
Definition 10.1, which quantify the amount of information communicated
between adjacent patterns of increasingly larger sizes that have limited
computation ressources (Definition 10.2) inductively: we first have a round
of communication between adjacent patterns of domain ⟦1⟧𝑑, then adjacent
patterns of domain ⟦2⟧𝑑, …

• In Theorem 10.10, we prove that validity in ℤ𝑑 sofic subshifts can be
checked by only having patterns of domain ⟦1⟧𝑑 do the verification:
communications of patterns of larger domains is not needed.

• In Theorem 10.11, we prove that if the configurations of a ℤ𝑑 sub-
shift can be verified in rounds of communications such that their
patterns of domain ⟦𝑛⟧𝑑 only need to communicate 𝑂(𝑛𝛼) bits under
time constraints 𝑡(𝑠) = 𝑂(𝑠𝛽) with their neighboors (for 𝛼 < 𝑑 − 1
and 𝛼 ⋅ 𝛽 < 𝑑 − 1), then it is actually sofic.

Structure of the chapters These chapters are organized as follows:
• In Chapter 10, we introduce the notion of inductive representations
along with several examples, and relate it to sofic multidimensional
subshifts. We also state our main result Theorem 10.11, whose proof
is postponed to Chapter 13.

• In Chapter 11, we consider a higher-dimensional and parallel model of
computation called “mesh-connected multicomputers”. Relating this
model with classical RAMcomputations,we prove a time-compressing
simulation (Theorem 11.8) that allows 𝑑-dimensional multicomputer
with 𝑛𝑑 processors to simulate, in 𝑛 steps of computations, 𝑛𝑑 steps of
RAM computations.

• Chapter 12 andChapter 13 are dedicated to the proof of Theorem 10.11,
which is built upon the “fixpoint construction” from [DRS12]. In
Chapter 14, we apply this result to both recover existing soficity proofs
and prove the new-found soficity of some effective subshifts.

• Finally, in Chapter 15, we relate multidimensional soficity and com-
munication complexity. In particular, we explore example subshifts
inspired by classical communication complexity, and develop some
perspectives and future questions to investigate.

Draft: June 5, 2025 at 14:45.

90

[Wes17] Westrick, “Seas of squares with
sizes from aΠ0

1 set”.
[Des21] Destombes, “Algorithmic com-
plexity and soficness of shifts in dimen-
sion two”.
[DR22] Destombes and Romashchenko,
“Resource-bounded Kolmogorov complex-
ity provides an obstacle to soficness ofmul-
tidimensional shifts”.

Final word Theorem 10.11 is the main result of these chapters: inspired
by [Wes17] and [Des21, Theorem 4], it generalizes these results to an ab-
stract sufficient condition for soficity based on the amount of information
contained and communicated between adjacent patterns in the configura-
tions of subshifts. As such, it also provides a partial answer to [DR22, Open
problem].
Our results unfortunately cannot answer when the information bound

is tight: assuming that a ℤ𝑑 subshift has inductive representations of size
Θ(𝑛𝑑−1) for its ⟦𝑛⟧𝑑 patterns, is it actually sofic? This motivated the exam-
ples we introduced in Chapter 15, but many of these perspectives are only
sketched and would deserve proper exploration.
In other words: the soficity of multidimensional subshifts is not solved

yet!

Draft: June 5, 2025 at 14:45.

97 Informally, the Kolmogorov complex-
ity of a pattern 𝑤 ∈ A∗𝑑 is the length of
the shortest program that prints𝑤 on its
output.

Soficity and inductive
representations 10

We introduce the notions of representations (Definition 10.1) and
inductive representations (Definition 10.2), which formalize the in-
tuition of communicating information between adjacent patterns to
verify the validity of their concatenation.
In Theorem 10.10, we prove that sofic ℤ𝑑 subshifts admit inductive

representations of size 𝑂(1). In Theorem 10.11, we state the main
result of these chapters: if a ℤ𝑑 subshift admits inductive representa-
tions of size 𝑂(𝑛𝛼) with time constraints 𝑡(𝑠) = 𝑂(𝑠𝛽) (for 𝛼 < 𝑑 − 1
and 𝛼 ⋅ 𝛽 < 𝑑 − 1), then it is actually sofic.

10.1 Recursive representations

10.1.1 Representations

What does it mean to consider the information contained inside a pattern?
While Kolmogorov complexity97 has traditionally been the go-to theory for
these questions, the notion we need to formalize our intuitions on patterns
is somewhat orthogonal. For example, inside a full shiftAℤ𝑑 , most patterns
havemaximal Kolmogorov complexity; but since all patterns are valid inAℤ𝑑 ,
we do not need any information about patterns to decide their validity.
Thus, we suggest the following straightforward definition: to each pat-

tern, we associate a set of strings that describe it. We call these strings
representations:

Definition 10.1. Given a dimension 𝑑 ∈ ℕ and a finite alphabetA, a repre-
sentation function is a multivalued functionR ∶ A∗𝑑 ⇉ {0, 1}∗. For a pattern
𝑤 ∈ A∗𝑑, the elements ofR(𝑤) ⊆ {0, 1}∗ are called representations.

How do representation functions relate to subshifts? For a given represen-
tation functionR ∶ A∗𝑑 ⇉ {0, 1}∗, we associate a subshift by only allowing
patterns that posses a valid representation, i.e. we consider:

{𝑥 ∈ Aℤ𝑑 ∶ ∀𝑤 ⊑ 𝑥, R(𝑤) ≠ ∅}.

As mentioned in the introduction, we use representations to determine
whether a given pattern is valid. For example, the representation function
thatmaps every pattern𝑤 ∈ A∗𝑑 to an encoding of𝑤 as a binary string defines
the full-shiftAℤ𝑑 , as does the representation function that associates every
pattern 𝑤 ∈ A∗𝑑 to the single empty representation {𝜀}. However, one is
much shorter than the other!

The definition of representation functions is very general, perhaps too
much: for example, given a subshift𝑋 ⊆ Aℤ𝑑 , one could define a represen-
tation functionR asR(𝑤) = {𝜀} if 𝑤 ∈ L(𝑋), andR(𝑤) = ∅ otherwise. To
effectively quantify the information needed to decide the validity of a pattern,
we will, from now on, only consider inductive representation functions.

Draft: June 5, 2025 at 14:45. 91

92 10 Soficity and inductive representations

+

R

I

R

110101 101001

000101 100111

100101100010

Figure 10.1: Induction on ℤ2: four pat-
terns, their concatenations and the associ-
ated representations.

98More precisely, for i ∈ ⟦2𝑛−𝑘−1⟧𝑑, the
set 𝐶𝑘+1

i is the union of the sets 𝐶𝑘
i′ for

𝑖′ ∈ 2 ⋅ i+ ⟦2⟧𝑑.

10.1.2 Inductions

We define inductive representation functions as the functions for which the
representations of a pattern can be computed from the representations of
its subpatterns:

Definition 10.2. Given 𝑑 ∈ ℕ, a finite alphabetA and a representation function
R ∶ A∗𝑑 ⇉ {0, 1}∗, an induction forR is a predicate I ⊆ ({0, 1}∗)2𝑑 × {0, 1}∗
such that:

∀𝑤 ∈ A⟦2𝑛⟧𝑑 , ∀𝑟 ∈ {0, 1}∗, ∀(𝑟i)i∈⟦2⟧𝑑 ∈ ({0, 1}∗)2𝑑 ,
((∀i ∈ ⟦2⟧𝑑, 𝑟i ∈ R(𝑤|𝐶i)) ∧ I((𝑟i)i∈⟦2⟧𝑑 , 𝑟)) ⟹ 𝑟 ∈ R(𝑤),

where the cubes (𝐶i)i∈⟦2⟧𝑑 form the partition ⟦2𝑛⟧𝑑 = ⊔i∈⟦2⟧𝑑 𝐶i of ⟦2𝑛⟧𝑑 into 2𝑑
cubes of size ⟦𝑛⟧𝑑.

In other words, for a given representation function R ∶ A∗𝑑 ⇉ {0, 1}∗,
an induction I ⊆ ({0, 1}∗)2𝑑 × {0, 1}∗ allows to verify the representations of
larger patterns from representations of its subpatterns. Even though in-
ductions are formally defined as predicates I ⊆ ({0, 1}∗)2𝑑 × {0, 1}∗, we will
often think of them as non-deterministic functions that return a represen-
tation 𝑟 ∈ {0, 1}∗ when given 2𝑑 subrepresentations (𝑟i)i∈⟦2⟧𝑑 ∈ ({0, 1}∗)2𝑑 .

⚠Notice that no “surjectivivity condition” is required in this definition:
it is not necessary that, for every 𝑟 ∈ R(𝑤), there exists (𝑟i) ∈ ({0, 1}∗)2𝑑

such that 𝑟i ∈ R(𝑤|𝐶i) and I((𝑟i)i∈⟦2⟧𝑑 , 𝑟).

Remark 10.3. To be precise, the definition above defines 2-inductions (since the
induction associates descriptions of ⟦2𝑛⟧𝑑 hypercubes with descriptions of ⟦𝑛⟧𝑑

hypercubes). However, this is not much of a restriction: any decomposition along
a hyperrectangle of ⟦𝑛⟧𝑑 hypercubes can be simulated by a 2-induction.

10.1.3 Representations and inductive validity

Since no surjectivity is required, a representation functionRmight define
representations for a pattern 𝑤 ∈ A⟦2𝑛⟧𝑑 even though the actual set of
representations which can be obtained when iterating I from the “pixels”
of 𝑤may be empty, or a strict subset ofR(𝑤).
Thus, we define the notion of inductively valid patterns, which are patterns

𝑤 ∈ A⟦2𝑛⟧𝑑 which can be inductively computed through 𝑛 steps of I (thus,
that admit valid representations at every level from pixels of domain ≃ ⟦1⟧𝑑
to the whole pattern of domain ⟦2𝑛⟧𝑑). For the following definition, we
partition ⟦2𝑛⟧𝑑 into nested hypercubes of sizes ⟦2𝑛−𝑘⟧2 for every 0 ≤ 𝑘 ≤ 𝑛:

Note 10.4. For 𝑛 ∈ ℕ and 0 ≤ 𝑘 ≤ 𝑛, we denote by 𝐶𝑘
i ⊆ ⟦2𝑛⟧𝑑 the hypercubes

of size ⟦2𝑘⟧ forming the partition of ⟦2𝑛⟧𝑑 into 2(𝑛−𝑘)⋅𝑑 elements:

⟦2𝑛⟧𝑑 = ⊔
i∈⟦2𝑛−𝑘⟧𝑑

𝐶𝑘
i .

We denote by 𝐶i = 𝐶𝑛−1
i . Notice that these partitions are nested: the hypercube

𝐶𝑘+1
i is the union of 2𝑑 elements of the partition (𝐶𝑘

i′)i′∈⟦2𝑛−𝑘⟧𝑑 .98

𝐶2
(0,0)

𝐶1
(0,0)

𝐶1
(0,1)

𝐶1
(1,0)

𝐶1
(1,1)

𝐶0
(0,0)

𝐶0
(0,1)

𝐶0
(0,2)

𝐶0
(0,3)

𝐶0
(1,0)

𝐶0
(1,1)

𝐶0
(1,2)

𝐶0
(1,3)

𝐶0
(2,0)

𝐶0
(2,1)

𝐶0
(2,2)

𝐶0
(2,3)

𝐶0
(3,0)

𝐶0
(3,1)

𝐶0
(3,2)

𝐶0
(3,3)

Figure 10.2: Three levels of nested partitions in dimension 𝑑 = 2.
Draft: June 5, 2025 at 14:45.

10.1 Recursive representations 93

Definition 10.5. A pattern 𝑤 ∈ A⟦2𝑛⟧𝑑 is said to be inductively valid if there
exists representations 𝑟𝑘i ∈ {0, 1}∗ for 0 ≤ 𝑘 ≤ 𝑛 and i ∈ ⟦2𝑛−𝑘⟧𝑑 such that:

(i) For every 0 ≤ 𝑘 ≤ 𝑛 and i ∈ ⟦2𝑛−𝑘⟧𝑑, we have 𝑟𝑘i ∈ R(𝑤|𝐶𝑘,i
);

(ii) For every 0 ≤ 𝑘 ≤ 𝑛 and i ∈ ⟦2𝑛−𝑘−1⟧𝑑, we have I((𝑟𝑘i′)i′∈𝐼, 𝑟
𝑘+1
i), where

𝐼 = 2 ⋅ i+ ⟦2⟧𝑑 ⊆ ⟦2𝑛−𝑘⟧𝑑 is the set of 2𝑑 adjacent hypercubes such that
⊔i′∈𝐼 𝐶𝑘

i′ = 𝐶𝑘+1,i.
(iii) For every 0 ≤ 𝑘 < 𝑛 and every hypercube 𝐼 = i + ⟦2⟧𝑑 ⊆ ⟦2𝑛−𝑘⟧𝑑

indexing 2𝑑 adjacent hypercubes (𝐶𝑘
i)i∈𝐼, there exists 𝑟 ∈ {0, 1}∗ such that

I((𝑟𝑘i)i∈𝐼, 𝑟).

The representation 𝑟𝑛0 is called a final representation of 𝑤.

𝑟0
(0,0)

𝑟0
(0,1)

𝑟0
(0,2)

𝑟0
(0,3)

𝑟0
(0,4)

𝑟0
(0,5)

𝑟0
(0,6)

𝑟0
(0,7)

𝑟0
(1,0)

𝑟0
(1,1)

𝑟0
(1,2)

𝑟0
(1,3)

𝑟0
(1,4)

𝑟0
(1,5)

𝑟0
(1,6)

𝑟0
(1,7)

𝑟0
(2,0)

𝑟0
(2,1)

𝑟0
(2,2)

𝑟0
(2,3)

𝑟0
(2,4)

𝑟0
(2,5)

𝑟0
(2,6)

𝑟0
(2,7)

𝑟0
(3,0)

𝑟0
(3,1)

𝑟0
(3,2)

𝑟0
(3,3)

𝑟0
(3,4)

𝑟0
(3,5)

𝑟0
(3,6)

𝑟0
(3,7)

𝑟0
(4,0)

𝑟0
(4,1)

𝑟0
(4,2)

𝑟0
(4,3)

𝑟0
(4,4)

𝑟0
(4,5)

𝑟0
(4,6)

𝑟0
(4,7)

𝑟0
(5,0)

𝑟0
(5,1)

𝑟0
(5,2)

𝑟0
(5,3)

𝑟0
(5,4)

𝑟0
(5,5)

𝑟0
(5,6)

𝑟0
(5,7)

𝑟0
(6,0)

𝑟0
(6,1)

𝑟0
(6,2)

𝑟0
(6,3)

𝑟0
(6,4)

𝑟0
(6,5)

𝑟0
(6,6)

𝑟0
(6,7)

𝑟0
(7,0)

𝑟0
(7,1)

𝑟0
(7,2)

𝑟0
(7,3)

𝑟0
(7,4)

𝑟0
(7,5)

𝑟0
(7,6)

𝑟0
(7,7)

𝑟1(0,0)

𝑟1(0,1)

𝑟1(0,2)

𝑟1(0,3)

𝑟1(1,0)

𝑟1(1,1)

𝑟1(1,2)

𝑟1(1,3)

𝑟1(2,0)

𝑟1(2,1)

𝑟1(2,2)

𝑟1(2,3)

𝑟1(3,0)

𝑟1(3,1)

𝑟1(3,2)

𝑟1(3,3)

𝑟2(0,0)

𝑟2(0,1)

𝑟2(1,0)

𝑟2(1,1)

𝑟3(0,0)

Figure 10.3: A pattern of domain ⟦23⟧𝑑 and its inductive representations (condition (𝑖)). By condition (𝑖𝑖), representations 𝑟1(0,3), 𝑟1(1,3),
𝑟1(0,2) and 𝑟1(1,2) are given to the induction I to compute the representation 𝑟2(0,1); representations 𝑟1(2,3), 𝑟1(3,3), 𝑟1(2,2) and 𝑟1(3,2) is given to
the induction I to compute the representation 𝑟2(0,1)… but by condition (𝑖𝑖𝑖), every group of 2 × 2 adjacent representations, such as 𝑟1(1,2),
𝑟1(2,3), 𝑟1(1,2) and 𝑟1(2,2) will compute an induction step.

Conditions (𝑖) and (𝑖𝑖) are straightforward, and define a hierarchy of
representations that are inductively computed using the nesting induced by
the partitions ((𝐶𝑘

i)i∈⟦2𝑛−𝑘⟧𝑑)0≤𝑘≤𝑛. Condition (𝑖𝑖𝑖) is slightly more technical:
due to the nesting induced by said partitions, some naughty patterns could
avoid detection by aligning themselves with the nesting; by checking every
set of 2𝑑 adjacent hypercubes in (𝑖𝑖𝑖), we ensure that bad alignment does not
prevent patterns from being checked by the induction.
Inductive representations can be used to define subshifts by only allowing

patterns that are inductively valid:

𝑋R,I = {𝑥 ∈ Aℤ𝑑 ∶ ∀𝑤 ⊑ 𝑥, ∃𝑛 ∈ ℕ, ∃𝑤′ ∈ A⟦2𝑛⟧𝑑 ,
𝑤 ⊑ 𝑤′ ⊑ 𝑥 and 𝑤′ is inductively valid}.

Draft: June 5, 2025 at 14:45.

94 10 Soficity and inductive representations

10.2 Examples

Let us consider a few basic examples of inductive representations for well-
chosen subshifts.

Example 10.6. Let 𝑋 ⊆ Aℤ𝑑 be any subshift. For any injective encoding
⟨⋅⟩ ∶ A∗𝑑 → {0, 1}∗ of patterns into binary strings, the representation functionR
defined byR(𝑤) = {⟨𝑤⟩} if 𝑤 ∈ L(𝑋), andR(𝑤) = ∅ otherwise, is inductive
(for I the predicate that computes the concatenation of the 2𝑑 subpatterns, and
checks whether the resulting pattern is valid) and verifies𝑋R,I = 𝑋.

In the previous example, the induction I is not necessarily a computable
predicate. However, in the case of effective subshifts, such representations
can be effectively computed. We present here a trick that will often be
repeated in later examples: we embed the computations of the forbidden
patterns into the induction I and check for their existence in patterns
via their representations.

Example 10.7. Let𝑋 ⊆ Aℤ𝑑 be an effective subshift. Let us fix a time-efficient
encoding ⟨⋅⟩ ∶ A∗𝑑 → {0, 1}∗ of patterns into binary strings (for example, encode
patterns as 𝑑-dimensional arrays), let us define:

• The representationR deterministically associates to a pattern 𝑤 ∈ A∗𝑑 the
single representation ⟨𝑤⟩;

• When given 2𝑑 subrepresentations ⟨𝑤𝑖⟩ for 𝑖 ∈ ⟦2⟧2, the induction I com-
putes ⟨𝑤⟩, where 𝑤 is the concatenation of 2𝑑 patterns (𝑤𝑖)𝑖∈⟦2⟧𝑑 . Denoting
𝑠 the total bit size of its input, I then computes 𝑂(log 𝑠) computation steps
of an enumeration of the forbidden patterns of 𝑋 and checks ⟨𝑤⟩: if any
of these forbidden patterns appears in 𝑤, then I rejects the computation;
otherwise, it accepts and returns ⟨𝑤⟩.
Then I has time complexity 𝑡(𝑠) = 𝑂(𝑠), since it only performs pattern
concatenation and checks for subpattern occurences of size 𝑂(log 𝑠).

Thus𝑋 admits inductive representationsR of size 𝑂(𝑛𝑑) on ⟦𝑛⟧𝑑 patterns with
computable inductions I of time complexity 𝑡(𝑠) = 𝑂(𝑠).

From the previous example, all effective subshifts admit inductive repre-
sentations of size at most 𝑂(𝑛𝑑). However, due to the geometrical configura-
tions of many example subshifts, the information contained within patterns
of domain ⟦𝑛⟧𝑑 can sometimes be compressed into representations much
shorter than 𝑂(𝑛𝑑).

Example 10.8. Let 𝑈 ⊆ Aℕ be an effectively closed set, and𝑋 = 𝑋T(𝑈) ⊆ Aℤ

the associated Toeplitz subshift. We prove the existence of inductive representa-
tions of size 𝑂(log𝑛) and associated time complexity 𝑡(𝑠) = 𝑂(𝑠).
Recall that Claim 5.1 showed that for every valid pattern 𝑤 ∈ L⟦𝑛⟧(𝑋), there

exists an element 𝑢 ∈ 𝑈 such that:
• One position out of two in 𝑤 contains the symbol 𝑢0. These are called the
positions of level 0;

• Among the remaining positions, one out of two contains the symbol 𝑢1. These
are called the positions of level 1;

• Etc… until level log𝑛;
• And at most three positions in 𝑤 contain symbols 𝑢𝑗 for 𝑗 ≥ log𝑛.

Notice that the positions occupied by levels ℓ ≤ log𝑛 − 1 are entirely determined
by their parity among the positions of level ℓ − 1. Unfortunately, it is not possible
to determine the level of a given position 𝑖 ∈ ⟦𝑛⟧: for example, the sequence 0ℕ is
Toeplitzified into the sequence 0ℤ.

Draft: June 5, 2025 at 14:45.

10.2 Examples 95

99 Of course, this distinction is purely con-
ceptual: while it guides most of our exam-
ples and constructions below, the intuition
it provides has little to do with sofic sub-
shifts and is probably limited.Maybe some
parallels could be drawn with the distinc-
tion difference between locally and glob-
ally valid patterns in a local/sofic subshift;
but intuitions only take us this far.

Yet, following this structure, we define a non-deterministic representationR
to contain, for 𝑤 ∈ A𝑛 a valid pattern in𝑋:

• The size 𝑛 ∈ ℕ;
• A non-deterministic guess of a sequence of bits 𝑏 ∈ {0, 1}log𝑛 such that
𝑏ℓ denotes the parity of the positions of level ℓ among the positions of level
ℓ − 1;

• A non-deterministic guess of a prefix 𝑢′ ∈ Alog𝑛; it should be consistent
with 𝑤 and the parity sequence 𝑏 ∈ {0, 1}log𝑛, i.e. all positions of level ℓ
(as determined by 𝑏) should contain the symbol 𝑢′

ℓ in 𝑤;
• The (at most) three remaining positions of ⟦𝑛⟧ that are not covered by
positions of level ℓ ≤ log𝑛 (as determined by the parity sequence 𝑏), and
the symbols ofA that each contains.

As a result, representations of patterns of domain ⟦𝑛⟧ are all of size 𝑂(log𝑛).
As is often the case in our examples, the induction I follows directly from the

representations ofR. Here, the induction I should check the consistency of the
two input subrepresentations𝑚1,𝑚2, and guess the next letter of the 𝑈-prefix:

• Check that the prefixes of 𝑚1 and 𝑚2 are the same; if not, reject the
computation;

• Check that the parity sequence of 𝑚2 is the parity sequence of 𝑚1, but
shifted by 𝑛; if not, reject the computation;

• Guess a new prefix 𝑢′ of length 1 + log𝑛 that agrees with the prefixes of
𝑚1 and𝑚2, and guess a new parity sequence of length 1+ log𝑛 that agrees
with the parity sequence of𝑚1. The new symbol of the prefix and the new
bit of parity should be consistent with the (at most) six positions of𝑚1 and
𝑚2 that were not covered by levels ℓ ≤ log𝑛. If not, reject the computation;

• Remember the (up to) three positions not covered by the new parity sequence
and their symbols in𝑚1 and𝑚2.

• Since𝑈 is effectively closed, compute log log𝑛 steps of an enumeration of the
cylinders of𝑈𝑐. This enumerates𝑂(log log𝑛) words of length𝑂(log log𝑛):
if 𝑢′ is suffix of any of them, reject the computation; otherwise, return the
newly computed representation.

In other words,𝑋 admits representations of size 𝑂(log𝑛) on ⟦𝑛⟧ patterns with
inductions that are computable in linear time 𝑡(𝑠) = 𝑂(𝑠).

In the previous example, the subshift𝑋T(𝑈) has polynomial pattern com-
plexity. Thus, the astute reader may not be surprised that patterns of domain
⟦𝑛⟧ admit representations of size𝑂(log𝑛).Of course, any full shift will admit
inductive representations of size 𝑂(1); but more interestingly, taking the
alphabet A = {0, 1} and adding free bits on top of all symbols 1 leads to a
new “Toeplitz-like” subshift – this time of exponential pattern complexity –
on which the very same representations and inductions still apply.

Remark 10.9. The Toeplitz example perfectly illustrates our main intuition
about inductive representations: they should either

• Outright reject a pattern for geometrical/basic structural reasons (e.g. if
it does not follow a Toeplitz structure);

• Or contain enough information about the underlying pattern to allow
checking it for the presence of forbidden patterns (e.g. in the Toeplitzifica-
tions of an effectively closed set 𝑈, check whether the forbidden patterns do
not appear Toeplitzified in the configuration).99

In particular, the information representations summarize from patterns is not
their pattern complexity, but rather relates to the amount of information one needs
to know about a pattern to reject it if it is invalid.

More examples of inductive representations are developed in Chapter 14.

Draft: June 5, 2025 at 14:45.

96 10 Soficity and inductive representations

10.3 Necessary and sufficient conditions for
soficity

10.3.1 Recursive representations of sofic subshifts

Theorem 10.10. For 𝑑 ∈ ℕ and a finite alphabetA, let𝑋 ⊆ Aℤ𝑑 be a sofic sub-
shift. There exists a representation functionR ∶ A∗𝑑 ⇉ {0, 1}∗ and an induction
I ⊆ ({0, 1}∗)2𝑑 × {0, 1}∗ forR such that:

(i) For any 𝑤 ∈ A⟦𝑛⟧𝑑 and for any representation 𝑟 ∈ R(𝑤), the size of 𝑟
verifies |𝑟| = 𝑂(1);

(ii) I is computable in time 𝑡(𝑠) = 𝑂(1) in the log-RAM model; and

(iii) 𝑋 = 𝑋R,I = {𝑥 ∈ Aℤ𝑑 ∶ ∀𝑤 ⊑ 𝑥, ∃𝑛 ∈ ℕ, ∃𝑤′ ∈ A⟦2𝑛⟧𝑑 ,
𝑤 ⊑ 𝑤′ ⊑ 𝑥 and 𝑤′ is inductively valid}.

The proof directly follows from the definition of soficity: representations
of patterns of domain ⟦1⟧𝑑 contain a symbol from the alphabet of a local
cover; and representations of patterns of domain ⟦𝑛⟧𝑑 for 𝑛 ≥ 2 are just
empty strings.

Proof. For 𝑋 ⊆ Aℤ𝑑 a sofic subshift, let 𝑌 ⊆ Bℤ𝑑 be a local cover of 𝑋
and denote 𝜋 ∶ B → A a projection from 𝑌 to 𝑋. For 𝑛 ∈ ℕ and a pattern
𝑤 ∈ A⟦𝑛⟧𝑑 , we defineR(𝑤) to be the following set of representations:

• If 𝑛 = 1, every symbol 𝑏 ∈ B such that 𝜋(𝑏) = 𝑤;
• If 𝑛 ≥ 2, the empty string 𝜀;

and we define the induction I((𝑟i)i∈⟦2⟧𝑑 , 𝑟) as follows:
• If the (𝑟i)i∈⟦2⟧𝑑 are representations of patterns of domain ⟦1⟧𝑑, each
𝑟i is a symbol of B. Check that their concatenation into a hypercube
of domain ⟦2⟧𝑑 is locally admissible in the local cover 𝑌: if the check
fails, reject the computation. Otherwise, accept and return the empty
string 𝜀 as a valid representation;

• Otherwise, when given 2𝑑 empty strings, accept and return the empty
string.

ThenR and I verify items (𝑖) and (𝑖𝑖) of the theorem. Since inductively
valid patterns 𝑤 ∈ A⟦2𝑛⟧𝑑 are exactly the patterns that admit a locally admis-
sible preimage in the local cover 𝑌, we conclude that𝑋 = 𝑋R,I.

In other words, the configurations of a ℤ𝑑 sofic subshift can be check valid
with just the first step of inductive validity. This agrees with the definitions
of sofic subshfits as projections of local subshifts: the validity of all patterns
can be non-deterministically checked by adjacency constraints.

10.3.2 Soficity of subshifts with small inductive
representations

As mentioned in the introduction, the intuition about sofic subshifts is that
the amount of information a pattern of domain ⟦𝑛⟧𝑑 can communicate to its
exterior is bounded by the size of its border, i.e. 𝑂(𝑛𝑑−1).
In a partial converse statement, we now prove the main theorem of these

chapters: if 𝑋 is a subshift that admits inductive representations of size
𝑂(𝑛𝛼) for 𝛼 < 𝑑 − 1 on its patterns of domain ⟦𝑛⟧𝑑, then – under some time
constraints –𝑋 is actually sofic. In other words: if the validity of the config-
urations of a given subshift𝑋 only require 𝑂(𝑛𝛼) bits of communication for
their 𝑛th step of inductive validity, and that said steps can be implemented
efficiently in space ⟦𝑛⟧𝑑, then𝑋 is sofic:

Draft: June 5, 2025 at 14:45.

10.3 Necessary and sufficient conditions for soficity 97

[DRS12] Durand, Romashchenko, and
Shen, “Fixed-point tile sets and their ap-
plications”.
100 The main argument in [Wes17] shows
that the “seas of squares” subshift admits
representations of size �̃�(𝑛2/3) and an in-
duction computable in time 𝑡(𝑠) = 𝑂(𝑠).
[Wes17] Westrick, “Seas of squares with
sizes from aΠ0

1 set”.
[Des21] Destombes, “Algorithmic com-
plexity and soficness of shifts in dimen-
sion two”.

101 See Section 12.4 for definitions.

Theorem 10.11. Fix 𝑑 ∈ ℕ and a finite alphabetA. LetR ∶ A∗𝑑 ⇉ {0, 1}∗ be
a representation function and I ⊆ ({0, 1}∗)2𝑑 × {0, 1}∗ be an induction for R
such that:

(i) There exists 𝛼 ∈ ℝ+ with 𝛼 < 𝑑 − 1 such that, for any 𝑤 ∈ A⟦𝑛⟧𝑑 and
every representation 𝑟 ∈ R(𝑤), the size of 𝑟 verifies |𝑟| = 𝑂(𝑛𝛼);

(ii) There exists 𝛽 ∈ ℝ+ with 𝛼 ⋅ 𝛽 < 𝑑 − 1 such that I is computable in time
𝑡(𝑠) ≤ 𝑂(𝑠𝛽) in the log-RAM model;

Then

𝑋R,I = {𝑥 ∈ Aℤ𝑑 ∶ ∀𝑤 ⊑ 𝑥, ∃𝑛 ∈ ℕ, ∃𝑤′ ∈ A⟦2𝑛⟧𝑑 ,
𝑤 ⊑ 𝑤′ ⊑ 𝑥 and 𝑤′ is inductively valid}

is a sofic subshift.

This theorem can be used to prove the soficity of a wide variety of subshifts
(see Chapter 14 for examples) by quantifying the amount of information
shared between patterns.We argue in Chapter 15 that our arguments are
an instance of ressource-bounded communication complexity.
As for the proof itself, it is based on the expanding simulating tileset

construction from [DRS12], directly inspired by previous results from L.
Westrick100 [Wes17] and J. Destombes [Des21]. Based on a geometrical
arrangement to compute inductive representations among the macro-tiles
of the aforementioned simulating tilesets, it also implements fast computa-
tions by borrowing ideas from a higher-dimensional and parallel model of
computation: namely, mesh-connected multiprocessors (see Chapter 11).
As the next chapters are busy introducing the tools that we have not yet
covered, the proof itself is postponed to Chapter 13.

Remark 10.12. We could actually lessen the gap between 𝑂(𝑛𝛼) for 𝛼 < 𝑑 − 1
and arbitrary functions 𝛼∶ ℕ → ℕ such that 𝛼(𝑛) = 𝑜(𝑛𝑑−1). Indeed, the only
overhead induced by our proof of Theorem 10.11 is logarithmic, so that some
functions 𝛼∶ ℕ → ℕ and 𝛽∶ ℕ → ℕ respecting 𝛽 ∘ 𝛼(𝑛) = 𝑜(𝑛𝑑−1

log𝑛) could actually
result in a sofic subshift.
However, additional properties (which hold for power functions) are required in

the proof: monotonicity, submultiplicativity, 𝛼(𝐿ℓ) ≪ 𝑁ℓ for a sequence of zoom
factors101 (𝑁ℓ)ℓ∈ℕ…Which altogether would probably make a general statement
difficult to parse.

Draft: June 5, 2025 at 14:45.

[Akl85] Akl, Parallel sorting algorithms.

102 Single Instruction Multiple Data:
many processors perform the same in-
struction synchronously on different data
points.
103 Multiple Instructions Multiple Data:
processors execute distinct instructions on
different data points.
104 Such as the ILLIAC IV (original article
in 1968).
[Lei92] Leighton, Introduction to parallel
algorithms and architectures.

105 Processors might have less than 2𝑑
neighbors, for example if they sit on the
border of the grid.

Mesh-Connected
MultiComputers 11

To implement arbitrary computations in patterns of domain ⟦𝑛⟧2,
one usually draws space-time diagrams of Turing machines: 𝑛 tape
cells on each line, with 𝑛 lines for the 𝑛 steps of computations. We
have, however, rarely seen any consideration being given to the com-
putational models available for higher-dimensional tilings.
In this chapter, we consider the parallel model ofMesh-Connected

Multicomputers [Akl85]. In Theorem 11.8, we prove that a (𝑑 − 1)-
dimensional MCMC of size 𝑁𝑑−1 can simulate, in time 𝑂(𝑁), at least
𝑁𝑑−1 computation steps of a RAM program: this makes MCMCs suit-
able to implement the computations of Theorem 10.11, which operate
on inputs of size 𝑂(𝑁𝑑−1), inside patterns of domain ⟦𝑁⟧𝑑.

11.1 Mesh-Connected MultiComputers and
algorithms

A Mesh-Connected MultiComputer describes a 𝑑-dimensional array of
processors with bounded memory arranged in a regular grid, each processor
only communicating with its immediate neighbors [Akl85, Chapter 5]. This
representation is also known under many different names, including Mesh-
Connected Multiprocessors, Mesh-Connected Parallel Computers, Mesh-
Connected (Parallel) Array Processors… and is both used in the SIMD102
and MIMD103 settings.
Mesh-Connected Multicomputers seem to have arisen from a mix of

emerging real-world parallel computers104 and algorithmic complexity at
the end of 60s/early 70s.For an overviewof the parallel algorithmic problems
discussed within the context of MCMCs and other parallel architectures
(sorting, routing, linear algebra…), we refer the reader to [Lei92].

11.1.1 Mesh-Connected MultiComputers

Definition11.1. A 𝑑-dimensionalMesh-ConnectedMultiComputer (MCMC)
of size 𝑁𝑑 is a 𝑑-dimensional array of 𝑁𝑑 processors arranged in a regular grid.
Each processor possesses 𝑂(log𝑁) bits of memory, and can communicate with its
2𝑑 immediately adjacent neighbors105.

Figure 11.1: Drawing of a 2D and a 3D array of processors.

Draft: June 5, 2025 at 14:45. 99

100 11 Mesh-Connected MultiComputers

106 For example, sending information
from one processor to another can be done
in 𝑂(1) steps in a non-deterministic set-
ting: a chain of processors can simulate-
nously “guess” the message, and then si-
multaneously check that these guesses are
consistent.

107 Boustrophedon is a style of writing in
which lines alternate being written from
left to right and right to left. The term
comes from greek βουστροφηδόν, “in the
way an ox turns [while plowing]”.

108 Computer scientists have an unbridled
imagination for agricultural metaphors.

The precise specifications of the processors involved in an MCMCmay
considerably vary in the litterature, ranging from unbounded computa-
tional power to finite state machines with various sets of instructions. Non-
deterministic computations does not seem to have been investigated in
MCMCs, maybe because of motivations grounded in CPU architecture
rather than theoretical computational complexity106.
Since time complexity and simulations will be important in the proof

of our main Theorem 10.11, and that tilings are a very natural setting for
non-determinism, we settle on the following definition for processors:

Definition 11.2. A processor in an 𝑁𝑑 MCMC is a non-deterministic RAM
machine whose memory is made of finitely many registers of length 𝑂(log𝑁) bits.
During a computation step, each processor may either read one register from an
adjacent neighboor, or perform one computation step of a non-deterministic RAM
program.

11.1.2 Sorting in MCMCs

Designing programs for mesh-connected multicomputers can be quite chal-
lenging, but also leads to unexpected results. For example, consider the
sorting problem: every processor in an 𝑁𝑑 MCMC is given an integer, and
the MCMC should permute these integers so that they end up sorted ac-
cording to a pre-defined indexing. Surprisingly, many sorting problems in
MCMCs can actually be solved in time 𝑂(𝑁).

Boustrophedon ordering The Boustrophedon ordering is a geometrical
ordering of 𝑑-dimensional arrays that generalizes classical orderings on the
line. Formally, let us consider (𝑂,≤) a totally ordered set.

Definition 11.3. A 2-dimensional array 𝑎 ∈ 𝑂𝑁×𝑁 is said to be sorted in
Boustrophedon order107 if, for every (𝑖, 𝑗) ≤lex (𝑖′, 𝑗′), we have:

• If 𝑖 < 𝑖′, then 𝑎𝑖,𝑗 ≤ 𝑎𝑖′,𝑗′;
• If 𝑖 = 𝑖′ and 𝑖 is even, then 𝑎𝑖,𝑗 ≤ 𝑎𝑖′,𝑗′;
• If 𝑖 = 𝑖′ and 𝑖 is odd, then 𝑎𝑖,𝑗 ≥ 𝑎𝑖′,𝑗′ .

0

1

2

3

7

6

5

4

8

9

10

11

15

14

13

12

0

1

2

3

3
28
35
60

7

6

5

4

4
27
36
59

8

9

10

11

11
20
43
52

15
15
16

47
48

14
14
17
46

49

13
13
18

45
50

12

12
12

19
19

44
44

51
51

Figure 11.2: 2D and 3D arrays of integers in Boustrophedon order.

The Boustrophedon ordering is also sometimes called the snake order-
ing, or the shear ordering108. It generalizes to dimension 𝑑 ≥ 3 by induc-
tion: for a given 𝑑-dimensional array, its (𝑑 − 1)-dimensional subarrays are
sorted alternatively in increasing or decreasing Boustrophedon order. The
𝑑-dimensional Boustrophedon ordering of the hypercube ⟦𝑛⟧𝑑 also generates
a simple reflected 𝑛-ary Gray code.

Draft: June 5, 2025 at 14:45.

11.2 Simulating RAM programs with MCMCs 101

[SSS86] Sen, Scherson, and Shamir,
“Shear Sort: A True Two-Dimensional
Sorting Techniques for VLSI Networks”.

[CS92] Corbett and Scherson, “Sorting in
Mesh Connected Multiprocessors”.

109 This is a parallel sorting algorithm for
1-dimensional array that has parallel com-
plexity𝑂(log2(𝑛)).
[Bat68] Batcher, “Sorting networks and
their applications”.
[TK77] Thompson and Kung, “Sorting on
a Mesh-Connected Parallel Computer”.
[NS79] Nassimi and Sahni, “Bitonic
sort on a Mesh-Connected Parallel Com-
puter”.
110 Since each halves of the array are recur-
sively sorting in parallel, and that merging
takes𝑂(𝑁) steps on arrays of size𝑁, the
recurrence on the time complexity 𝑇(𝑁)
is of the form 𝑇(𝑁) = 𝑇(𝑁/2) + 𝑂(𝑁),
so that 𝑇(𝑁) = 𝑂(𝑁).

Introductory sorting algorithms on MCMCs A nearly-optimal algo-
rithm for Boustrophedon ordering on 2-dimensional MCMCs was intro-
duced in [SSS86]. While it has a logarithmic overhead from the optimal
complexity, it is very simple to implement, and illustrates how the higher-
dimensional geometry of MCMCs can be used to sort elements faster than
traditional array sorting:

function SHEAR-SORT(𝑎) ▷ 𝑎 is 2-dimensional array
loop
Sort even-indexed rows of 𝑎 in parallel from left to right;
Sort odd-indexed rows of 𝑎 in parallel from right to left;
Sort all columns of 𝑎 in parallel from top to bottom.

Lemma 11.4 ([SSS86]). Let 𝑎 ∈ 𝑂𝑁×𝑁 be a matrix of size 𝑁 × 𝑁 given as
input to SHEAR-SORT. After log𝑁 iterations of the main loop, the matrix 𝑎 is
sorted by Boustrophedon ordering.

It was further generalized to 𝑑-dimensional MCMCs in [CS92]:

Lemma 11.5 ([CS92]). For 𝑑 ∈ ℕ, the algorithm MESH-SORT for Boustrophe-
don sorting on MCMCs of size 𝑁𝑑 has time complexity 𝑂(𝑑2 ⋅ 𝑁 log𝑁).

Optimal sorting algorithms on MCMCs While these algorithms are
easy to implement, their complexities are suboptimal. The bitonic sort109,
introduced in [Bat68], was adapted to several optimal algorithms on higher-
dimensionalmesh-connectedmulticomputers for various indexings in [TK77;
NS79, …]. In particular,

Lemma 11.6 ([NS79]). For 𝑑 ∈ ℕ, there exists an algorithm for Boustrophedon
sorting on MCMCs of size 𝑁𝑑 with time complexity 𝑂(𝑑2 ⋅ 𝑁).

Remark 11.7. Since the litterature about mesh-connected multicomputers is not
interested in the one-dimensional case, we should clearly state the the result still
holds in dimension 𝑑 = 1 by implementing a parallel merge sort110.

11.2 Simulating RAM programs with MCMCs

To avoid the task of designing parallel algorithms for mesh-connected mul-
ticomputers, we prove that traditional log-RAM programs can be efficiently
simulated by MCMCs. These ideas follow the proof of Proposition 4.31:
using non-determinism, memory calls are “guessed” during the simulation,
and these guesses are written on a special memory array. At the end of
the simulation, the computation device checks whether these guesses were
correct by sorting this memory array and verifying its consistency.
More precisely, we prove the following result:

Theorem 11.8. Let 𝑒 be a RAM program running in time 𝑡(𝑛). For any 𝑑 ∈ ℕ,
there exists an MCMC program that, if run on a mesh-connected grid of 𝑁𝑑

processors for 𝑁 = 𝑑√𝑡(𝑛), simulates 𝑒 in time 𝑂(𝑁).

In other words: 𝑑-dimensional MCMCs can simulate, in time 𝑂(𝑁), at
least 𝑁𝑑 steps of computations of any RAM program.We had never heard
of such simulation results before, though they turn out to be useful in the
context of higher-dimensional tilings (see Section 11.3); however, we would
not be surprised if – as most simulations results – this was well-known to
some people and considered to be “folklore”.

Draft: June 5, 2025 at 14:45.

102 11 Mesh-Connected MultiComputers

111 Indeed, the input is of size at most
𝑂(𝑁𝑑), so that log𝑁𝑑 = 𝑂(log𝑁).

112Which corresponds to the index of the
processor in Boustrophedon ordering.

113 idem.

Proof. Let 𝑒 be a RAM program. As in Proposition 4.31, the associated
MCMC program will be divided in two parts: a simulation part, which runs
the computations of 𝑒; and a validation part, which checks whether the run
was actually valid.

Simulation part (𝑂(1) steps) Following the Boustrophedon indexing of
the 𝑁𝑑 processors of the MCMC, we make the 𝑖th processor of the MCMC
simulate the 𝑖th step of a valid run of the program 𝑒. More precisely:
1. We store the program 𝑒 in each processor (𝑂(1) bits);
2. Each processor “guesses” a value for the instruction pointer, a value
for each variable of the log-RAMmodel, and stores the resulting values
in a first set of memory cells (𝑂(1) + 𝑂(log𝑁) bits111);

3. Each processor “simulates” the operation corresponding to the in-
struction pointer it guessed at the previous step as follows:
• Input readings var0 ^<- I[var1]: non-deterministically, the
processor “guesses” a binary word 𝑤 ∈ {0, 1}𝑂(log𝑁) and stores
the record (INPUT,READ,i,w) in its memory, where i is the cur-
rent value of var1 (𝑂(log𝑁) bits);

• Memory readings var0 ^<- M[var1]: non-deterministically, the
processor “guesses” a binary word 𝑤 ∈ {0, 1}𝑂(log𝑁) and stores
the record (MEMORY,READ,time,address,w) in itsmemory,where
time is the time step simulated112 address is the current value
of var1 (𝑂(log𝑁) bits).

• MemorywritingsM[var0] ^<- var1: the processor stores a record
(MEMORY,WRITE,time,address,w) in its memory, where time is
the time step simulated113, address is the current value of var0
and w is the current value of var1 (𝑂(log𝑁) bits).

• In all cases, after guessing memory readings if needed, the pro-
cessor executes its instruction on its set of variables. In a second
set of memory cells, it stores the updated values of the variables
and of the instruction pointer (𝑂(log𝑁) bits).

4. All processors check in parallel the consistency of their computation
step with the neighbor that precedes them in Boustrophedon order:
more precisely, they check the consistency of the instruction pointer
and the consistency of the variables.

Validation part (𝑂(𝑁) steps) During the simulation part, all the memory
calls (i.e. reading the input, or reading) had to be guessed. We are left with
checking that these guesses were actually correct.
Since each processor is given one word of the input array, processors

should keep them intact during the 𝑂(1) steps of simulation. At the end of
the simulation part, each processor may contain:

• An input initial record (INPUT,WRITE,i,value) where 𝑖 is an index
of size 𝑂(log𝑁) bits, and 𝑤 is the 𝑖th binary word of length 𝑂(log𝑁)
of the input array 𝐼, as seen by the processor;

• An input reading record (INPUT,READ,i,value) if the computation
step simulated was an input reading (where time and i are integers
and b is a bit);

• A memory reading record (MEMORY,READ,time,address,value) or
a memory writing record (MEMORY,WRITE,time,address,value) if
the computation step simulated was a memory reading or a memory
writing (where time is an integer, and address and value are binary
words of length 𝑂(log𝑁)).

Draft: June 5, 2025 at 14:45.

11.3 Space-time diagrams of MCMCs 103

114With the notations above, the sorting is
done by increasing values of address, and
for equal values of address by increasing
values of time.

115 Two successive memory readings
should return the same value; an unitial-
ized memory cell should not be read; a
memory reading following a memory writ-
ing should read the correct value…

116Up to the fact that a processor state con-
tains𝑂(log𝑁) bits of information, which
– unlike Turing machines, whose cells all
contain𝑂(1) bits of information – is not
constant as we consider multicomputers
of increasing sizes.

117 Since space-time diagrams are local, lo-
cal validity between subarray only requires
to communicate the processor states ap-
pearing on their border.

During the validation part, the MCMC performs the following steps:
1. Using Lemma 11.6, we independently sort INPUT records and MEMORY
records by lexicographic order on their addresses and time steps114
(𝑂(𝑁) steps).

2. Adjacent processors check in parallel with the neighbor that precedes
them in Boustrophedon order that, if they contain records operating
on the same memory value, these records are chronologically consis-
tent115; and crash the computation if they are not (𝑂(1) steps).

If the validation part did not crash, then the MCMC accepts or rejects de-
pending on the final state of the simulated run of the program 𝑒.

11.3 Space-time diagrams of MCMCs

Configurations Since a processor in a mesh-connected multicomputer
of size 𝑁𝑑 consists of a RAM program and finitely many variables of size
𝑂(log𝑁), we define the state of anMCMCprocessor as the tuple containing:

• The value of all its variables (𝑂(1) ⋅ 𝑂(log𝑁) bits);
• The RAM program it runs (𝑂(1) bits);
• And the value of its instruction pointer (𝑂(1) bits).
Such a mesh-connected multicomputer being made of 𝑁𝑑 processors

sitting on a 𝑑-dimensional grid, we call configurations (i.e. the possible global
states of the MCMC) the 𝑑-dimensional arrays of domain ⟦𝑁⟧𝑑 that map a
position i ∈ ⟦𝑁⟧𝑑 to the state of the processor of index i.

We now consider a graphical representation of the computation of mesh-
connected multicomputers as space-time diagrams:

Definition 11.9 (Space-time diagram). For a given run of a mesh-connected
multicomputer of size 𝑁𝑑 during 𝑇 computation steps, the associated space-time
diagram is a (𝑑+1)-dimensional array of size ⟦𝑇⟧×⟦𝑁⟧𝑑 such that each subarray
{𝑡} × ⟦𝑁⟧ contains the configuration of the MCMC at the 𝑡th step of computation.

Locality One noticeable property of mesh-connected multicomputers is
their well-suitedness for tiling implementations116:

Note 11.10 (Locality). Space-time diagrams of mesh-connected multicomputers
are defined by local rules.

Indeed, the validity of a space-time diagram only depends on checking
the validity of adjacent positions: for a given processor i ∈ ⟦𝑁⟧𝑑 and a time
step 𝑡 ∈ ⟦𝑇⟧, validity can be enforced by only checking that the state of the
processor i at time 𝑡 is consistent with the state it was in at the time step
𝑡− 1, and – in case of a memory reading – that it correctly reads the memory
of its neighboor of index i+ e𝑗 for some 1 ≤ 𝑗 ≤ 𝑑.

Distribution to subarrays Using the fact that space-time diagrams of
mesh-connected multicomputers are governed by local rules, we will some-
times distribute their computations to subarrays of size ⟦𝑀⟧𝑑 for𝑀 < 𝑁:

Definition 11.11. For a given mesh-connected multicomputer of size 𝑁𝑑, a
subarray of size𝑀𝑑+1 is a cubic piece of size𝑀𝑑+1 from a space-time diagram.

A grid of (𝑁/𝑀)𝑑+1 subarrays of size𝑀𝑑+1 can, together, hold any space-
time diagram composed of 𝑁 computation steps from an MCMC of size 𝑁𝑑.
Furthermore, assuming that each subarray is a valid piece of computation,
the validity of the whole grid of subarray can be checked by only exchanging
𝑂(𝑀𝑑) processor states between all pairs of adjacent subarrays117.

Draft: June 5, 2025 at 14:45.

[DRS08] Durand, Romashchenko, and
Shen, “Fixed point and aperiodic tilings”.
[DRS12] Durand, Romashchenko, and
Shen, “Fixed-point tile sets and their ap-
plications”.

(, , ,) =

Figure 12.1: AWang tile on ℤ2.

Figure 12.2: A configuration of Wang
tiles.

[Wan61]Wang,“Proving theorems by pat-
tern recognition – II”.

[Ber64] Berger, “The undecidability of
the Domino problem”.

The expanding simulation
framework 12

Our proof of Theorem 10.11 relies on the so-called “fixpoint con-
struction” of subshifts, which was published in a series of articles rang-
ing from [DRS08] to [DRS12]. In this chapter, we present this con-
struction and the expanding simulating tilesets it builds. The reader
already familiar with the methods involved should feel free to quickly
check the vocabulary used and then skip to the next chapter.

12.1 Tilesets

Since this construction is formulated in terms ofWang tiles, we briefly recall
Wang tiles as a special case of local subshift:Wang tiles are square tiles whose
edges are colored, and the local validity rule of the resulting subshift enforces
that neighboring tiles share the same color on their common edge.

Definition 12.1. Let C be a finite set of colors. On ℤ2, aWang tile is an element
(𝑐North, 𝑐East, 𝑐South, 𝑐West) ∈ C4, which is understood as a square tile whose edges
are colored by colors of C.

Wang tiles generalize to arbitrary dimensions 𝑑 ∈ ℕ: instead of being
4-tuples of colors 𝑐 ∈ C, they are 2𝑑-tuples of such colors.

Definition 12.2. For C a finite set of colors, a tileset 𝑇 ⊆ C2𝑑 is a set of Wang
tiles. Furthermore, a tileset 𝑇 ⊆ C2𝑑 defines a local subshift 𝑋𝑇 ⊆ 𝑇 ℤ𝑑 , whose
configurations are colorings 𝑥 ∈ 𝑇 ℤ𝑑 such that any two adjacent Wang tiles have
the same color on their common edge.

Wang tiles appeared in [Wan61, Section 4.1] in order to reduce frag-
ments of logic to geometrical ℤ2 tilings. It conjectured the decidability of the
Domino problem (given a tileset 𝑇, is the resulting subshift non-empty?),
and that all tilesets allow strongly periodic configurations. These were later
disproved in [Ber64], which coined the term “Wang tiles” and proved the
Domino problem undecidable.
We mentioned in Proposition 3.42 that subshifts of finite type are conju-

gated to local subshifts. In fact, both are conjugated to Wang tilings:

Proposition 12.3. Let𝑋 ⊆ Aℤ𝑑 be a local subshift. There exists a tileset 𝑇 on
colors C = A2 such that𝑋𝑇 and𝑋 and conjugate.

Sketch of proof. Wedevise the tiles of 𝑇 to bear pairs of symbols (𝑎, 𝑏) ∈ A×A
encoding the local rule of𝑋 on their (𝑑 − 1)-dimensional facets:

Figure 12.3: Transformation of configurations from𝑋 to𝑋𝑇.
Draft: June 5, 2025 at 14:45. 105

106 12 The expanding simulation framework

[DRS08] Durand, Romashchenko, and
Shen, “Fixed point and aperiodic tilings”.
[DRS10] Durand, Romashchenko, and
Shen, “Effective closed subshifts in 1D can
be implemented in 2D”.
[DRS12] Durand, Romashchenko, and
Shen, “Fixed-point tile sets and their ap-
plications”.
[Gác86] Gács, “Reliable computation
with cellular automata”.
[Gác01] Gács, “Reliable cellular automata
with self-organization”.
[Tör21] Törmä, “Fixed point construc-
tions in tilings and cellular automata”.

12.2 Simulation

As mentioned in the introduction, the expanding simulation framework is
based on a “fixpoint construction” introduced in a series of articles including
[DRS08], [DRS10] and [DRS12]; themselves based on earlier work on self-
simulating cellular automata [Gác86; Gác01]. For a more complete history
on this fascinating construction, we refer to the extensive survey [Tör21].
The whole fixpoint construction is built upon the notion simulations be-

tween tilesets:

Definition 12.4. Let 𝑇 and 𝑆 be two tilesets. A simulation of 𝑇 by 𝑆 with zoom
factor 𝑁 is an injective map 𝜙 ∶ 𝑇 → 𝑆𝑁×𝑁, whose image consists of locally valid
𝑆-patterns of size 𝑁 ×𝑁 calledmacro-tiles, such that:

• For any two tiles 𝑡1, 𝑡2 ∈ 𝑇, the horizontal (resp. vertical) concatenation 𝑡1 𝑡2
is locally valid in 𝑇 if and only if the horizontal (resp. vertical) concatenation
𝜙(𝑡1)𝜙(𝑡2) is locally valid in 𝑆.

• For every valid 𝑆-tiling 𝑠 ∈ 𝑆ℤ2 , there exists a unique decomposition of 𝑠
in an infinite grid of 𝑁 ×𝑁macro-tiles 𝑠|(𝑁𝑖,𝑁𝑗)+⟦𝑁⟧2 ∈ 𝜙(𝑇).

Intuitively, a simulation of 𝑇 by 𝑆 is a bijection between 𝑇-tilings and
𝑆-tilings (up to a zoom factor 𝑁) which maps the tiles of 𝑇 to valid patches
of 𝑁 ×𝑁 patches of 𝑆-tiles called macro-tiles.

12.3 Overview of the construction

As we will build upon the fixpoint construction in this thesis, this chapter
recalls from [DRS08] how it can be used to build an expanding sequence
of simulating tilesets. Before we begin the proof, we briefly summarize the
main principles involved:

Simulating tiles froma fixed tileset For a tileset 𝑇with colors C ⊆ {0, 1}∗,
we introduce the function 𝑔∶ ({0, 1}∗)4 → {⊤,⊥} that recognizes it:

Definition 12.5. A function 𝑔∶ ({0, 1}∗)4 → {⊤,⊥} is said to recognize the
tileset 𝑇 ⊆ ({0, 1}∗)4 if 𝑔(𝑐N, 𝑐W, 𝑐S, 𝑐E) = ⊤ if and only if (𝑐N, 𝑐W, 𝑐S, 𝑐E) ∈ 𝑇.

The key idea of the proof will be, for a given tileset 𝑇, to build a tileset
𝑆 whose macro-tiles will implement colors on their borders; and embed
the computations of the function recognizing the tileset 𝑇 that we want to
simulate on the colors that appear on their borders, as to ensure that each
macro-tile really simulates a tile of 𝑇.

𝑐S

𝑐E

𝑐N

𝑐W 𝑔(𝑐N, 𝑐W, 𝑐S, 𝑐E)

Figure 12.4: Schematics of a macro-tile.

On the borders of the macro-tile, areas
called “macro-colors” contain the col-
ors of a tile (𝑐N, 𝑐W, 𝑐S, 𝑐E) ∈ ({0, 1}∗)4.
Wires transport the colors to the mid-
dle area, which embeds the computa-
tions of 𝑔(𝑐N, 𝑐W, 𝑐S, 𝑐E) and verifies that
(𝑐N, 𝑐W, 𝑐S, 𝑐E) ∈ 𝑇.

Draft: June 5, 2025 at 14:45.

12.3 Overview of the construction 107

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

𝑔(⋯)

Figure 12.5: A configuration of𝑋𝑇, and the corresponding configuration of
macro-tiles (up to zoom factor 𝑁).

118 In other words, we “build 𝑇ℓ from the
tiles of 𝑇ℓ+1”.

The zoom factor 𝑁 with which 𝑆 simulates 𝑇 will depend on the time
complexity of running the computations of 𝑔; but in the end, for a given
𝑇, there will exist some 𝑁 ∈ ℕ such that the tileset 𝑆 we sketched above
simulates 𝑇 with zoom factor 𝑁.

A sequence of tilesets that simulate each other To build a sequence of
tilesets (𝑇ℓ)ℓ∈ℕ such that each tileset simulates 𝑇ℓ+1, notice that the method
above goes in the wrong direction: we build the simulating tileset 𝑆 from
the tileset 𝑇, and not the other way around118.
The solution consists in working with the functions that recognizes these

tilesets instead of the tilesets themselves. More precisely, let 𝑒 ∈ {0, 1}∗
be a code describing a function 𝜑𝑒 ∶ ℕ × ({0, 1}∗)4 → {⊤,⊥}; and consider
the tileset {(𝑐N, 𝑐W, 𝑐S, 𝑐E) ∈ ({0, 1}∗)4 ∶ 𝜑𝑒(ℓ + 1, 𝑐N, 𝑐W, 𝑐S, 𝑐E) = ⊤; which,
by happenstance, we denote 𝑇 ′

ℓ+1. In the previous paragraphs, we sketched
a tileset 𝑇 ′

ℓ that simulates 𝑇 ′
ℓ+1 with some zoom factor 𝑁ℓ; and we denote

𝑐N, 𝑐W, 𝑐S, 𝑐E ↦ 𝑓(𝑒, ℓ, 𝑐N, 𝑐W, 𝑐S, 𝑐E) the function that recognizes the tileset
𝑇 ′
ℓ : indeed, this tileset only depends of 𝑁ℓ – which we assume is computed
from ℓ ∈ ℕ – and of the code 𝑒 describing 𝑇 ′

ℓ+1.
With these notations, we can actually apply the fixpoint theorem (Propo-

sition4.30): there exists some code 𝑒 ∈ {0, 1}∗ such that 𝑓(𝑒, ℓ, ⋯) = 𝜑𝑒(ℓ,⋯).
But then, for well-behaving sequences of zoom factors (𝑁ℓ)ℓ∈ℕ, the tile-
sets 𝑇ℓ = {𝑐N, 𝑐W, 𝑐S, 𝑐E ∈ ({0, 1}∗)4 ∶ 𝜑𝑒(ℓ, 𝑐N, 𝑐W, 𝑐S, 𝑐E) = ⊤} will follow
[DRS08] and form a sequence of tilesets (𝑇ℓ)ℓ∈ℕ such that each 𝑇ℓ simulates
𝑇ℓ+1 with zoom factor 𝑁ℓ once ℓ is large enough. In particular, there exists
some ℓ large enough such that, for all ℓ′ ≥ ℓ, the tileset 𝑇ℓ will simulate 𝑇ℓ′
with zoom factor 𝑁 = ∏ℓ′−1

𝑘=ℓ 𝑁𝑘.

Draft: June 5, 2025 at 14:45.

108 12 The expanding simulation framework

12.4 Building expanding simulating tilesets

We now formally develop the proof sketch of the previous section to build
sequences of simulating tilesets with expanding zoom factors. In what fol-
lows, we fix an increasing sequence of integers (𝑁ℓ)ℓ∈ℕ. Restrictions on the
growth of (𝑁ℓ)ℓ∈ℕ will be added along the proof.
Additionally, all the colors that we consider for these tilesets will be binary

strings of {0, 1}∗, and represent records made of various data fields: for
convenience, these fields have been named instead of numbered.

12.4.1 Macro-tiles

By definition of a simulation, any tileset 𝑇ℓ that simulates another 𝑇ℓ+1 with
zoom factor𝑁ℓ must verify the following property: each valid 𝑇ℓ must have a
unique decomposition into a regular grid of𝑁ℓ ×𝑁ℓ macro-tiles, i.e.𝑁ℓ ×𝑁ℓ
locally valid blocks of 𝑇ℓ-tiles.
To ensure this, we make each tile of 𝑇ℓ contain its coordinates (modulo

𝑁ℓ × 𝑁ℓ) in its colors, so that adjacent 𝑇ℓ-tiles must organize themselves
into 𝑁ℓ ×𝑁ℓ blocks. More precisely, we add a position field in the colors of
𝑇ℓ-tiles that contains a pair of integers (𝑖, 𝑗) ∈ ⟦𝑁ℓ⟧ × ⟦𝑁ℓ⟧. Furthermore,
we force the tiles of 𝑇ℓ to have the following form (where all coordinates are
taken modulo (𝑁ℓ, 𝑁ℓ)):

(𝑖, 𝑗)

(𝑖, 𝑗)

(𝑖, 𝑗+1)

(𝑖+1, 𝑗)

so that valid 𝑇ℓ configurations are made of 𝑁ℓ ×𝑁ℓ blocks organized neatly
into a regular grid, each having respectively tiles

(0, 0)

(0, 0)

(0, 1)

(1, 0) and
(𝑁ℓ−1,𝑁ℓ−1)

(𝑁ℓ−1,𝑁ℓ−1)

(𝑁ℓ − 1, 0)

(0,𝑁ℓ − 1)

at their South-West andNorth-East corners. In thewhole proof, these blocks
are called macro-tiles.

(𝑖, 𝑗) (𝑖+1, 𝑗)

(𝑖, 𝑗)

(𝑖+1, 𝑗+1)

𝑁ℓ

𝑁ℓ

Figure 12.6: Structure of a macro-tile.

Draft: June 5, 2025 at 14:45.

12.4 Building expanding simulating tilesets 109

119 Somehow, though the reader may dis-
agree, we found that full formalism does
not help making the exposition clearer.

12.4.2 Macro-colors

To make macro-tiles actually simulate the tiles of 𝑇ℓ+1 instead of blank tiles,
we now add macro-colors to the macro-tiles formed by groups of 𝑇ℓ-tiles.
Recall that all colors are assumed to be (through encoding) binary strings.
Since any tileset 𝑇ℓ+1 must be finite, the tiles of 𝑇ℓ+1 involve only finitely

many colors. Assuming that these colors are binary strings of length, say,
lenℓ+1 ∈ ℕ, we choose lenℓ+1 tiles of 𝑇ℓ along each of the four edges of a
macro-tile to bear an additional color field consisting of a a single bit: along
any edge of a macro-tile, the concatenation of the color field of these color
fields will form a string of {0, 1}lenℓ+1 called a macro-color.

Figure 12.7: Areas containing the macro-colors in a macro-tile.

Remark. We are very informal in this description119, as we did not specify the
positions of these macro-colors nor their length lenℓ+1 ∈ ℕ. One important point
is that whether the “color field” of a 𝑇ℓ-tile is blank or actually contains a bit of
information should only depend on its position in the macro-tile (for one, it must
be on the border of a macro-tile; one could choose, for example, to pick the lenℓ
middle tiles along an edge). See Remark “Computable layout”.

By having the bits of macro-colors facing the outer side of the macro-
tiles, we ensure that adjacent macro-tiles must have the same macro-color
along their common edge. In particular, at this point of the construction, 𝑇ℓ
simulates the tileset ({0, 1}lenℓ+1)4 with zoom factor 𝑁ℓ.

Figure 12.8: Adjacent macro-tiles with their macro-colors.

12.4.3 Computation layer

In order to restrict the tuples of macro-colors that can appear on the edges
of the macro-tiles to a given subset of ({0, 1}lenℓ)4, we provide these macro-
tiles with some embedded computations, which are implemented by adding
another field in the colors of 𝑇ℓ.
Consider the mesh-connected computer described in Theorem 11.8: with

a grid of𝑁𝑑−1 processors, it simulates𝑁𝑑−1 steps of RAM computation with
a constant factor of time overhead. Following Section 11.3, we embed its
space-time diagrams into macro-tiles of size 𝑁ℓ ×𝑁ℓ.

Draft: June 5, 2025 at 14:45.

110 12 The expanding simulation framework

120Why not just a single processor state?
Because the simulation of log-RAM pro-
grams from Theorem 11.8 induces a𝑂(1)-
time overhead, so that we need to “linearly
compress” the space-time diagram along
the time direction.

𝑡 = 0, 1, 2;
𝑡 = 3, 4, 5;
𝑡 = 6, 7, 8;
𝑡 = 9, 10, 11;
𝑡 = 12, 13, 14;
𝑡 = 15, 16, 17;
𝑡 = 18, 19, 20;
𝑡 = 21, 22, 23;
𝑡 = 24, 25, 26;
𝑡 = 27, 28, 29;
𝑡 = 30, 31, 32;
𝑡 = 33, 34, 35;
𝑡 = 36, 37, 38;
𝑡 = 39, 40, 41;
𝑡 = 42, 43, 44;

𝑡 = 8
𝑡 = 7

𝑡 = 6

Figure 12.9: The computation layer of a macro-tile. In dimension 𝑑 = 2, it
draws the space-time diagram of a one-dimensional MCMC
of size 𝑁ℓ for 3 ⋅ 𝑁ℓ steps of computation.

3 time steps are packed on each line, result-
ing in 3⋅𝑁ℓ steps ofMCMC computations
being contained inside this space-time di-
agram of size ⟦𝑁ℓ⟧2.

More precisely, let us consider the MCMC program 𝑒RAM ∈ {0, 1}∗ that
simulates log-RAM programs with constant factor overhead as in Theo-
rem 11.8. The processors of the associated MCMC of size 𝑁ℓ contain:

• The RAM program 𝑒RAM ∈ {0, 1}∗, which is the code executed by the
processor;

• A special variable pos that stores the position of the processor in the
MCMC array;

• A special variable program that contains the code of a log-RAM pro-
gram 𝑒 ∈ {0, 1}∗ that is to be simulated by the whole MCMC;

• A special variable input that is interpreted as the posth input word of
a log-RAM input array;

• Finitely many variables var𝑖 ∈ {0, 1}∗ of length at most 𝑂(log𝑁ℓ).
To embed the space-time diagram of a mesh-connected computer operat-

ing on 𝑁ℓ processors in time 𝑂(𝑁ℓ), we add to each of the 𝑁ℓ ×𝑁ℓ tiles in a
macro-tile a processor field containing 𝑂(1) consecutive states of an MCMC
processor120 that operate on words of size 𝑂(log𝑁ℓ). All the processor fields
should, together, draw a space-time diagram of 𝑁ℓ MCMC processors on
𝑂(1) ⋅ 𝑁ℓ time steps.

At this point of the proof, macro-tiles can embed 𝑁ℓ computation steps of
an arbitrary log-RAMprogram.For these computations to correctly simulate
a given tileset, let 𝑒 be a log-RAMprogram such that 𝜑𝑒 ∶ ({0, 1}∗)∗ → {⊤,⊥}
is a function recognizing a tileset 𝑇; and let us write 𝑒 in the variable program
of the 𝑂(1) processor states appearing in each tile.
Since 𝑇 is finite, there exists some time bound 𝑏 ∈ ℕ such that that 𝑒

terminates on every 𝑡 ∈ 𝑇 in time less than 𝑏. If 𝑁ℓ is larger than 𝑏, so that
every computation of 𝑒 on the tiles of 𝑇 has enough time to accept: then the
MCMC admits an accepting run on a given macro-color (𝑐N, 𝑐W, 𝑐S, 𝑐E) if
and only if it (𝑐N, 𝑐W, 𝑐S, 𝑐E) is accepted by a run of the log-RAM program 𝑒,
i.e. if and only if (𝑐N, 𝑐W, 𝑐S, 𝑐E) ∈ 𝑇.

12.4.4 Wiring the macro-colors to the computation layer

To make macro-tiles and their computation layer correctly simulate other
tilesets,we need to ensure that the input array of their computation layer con-
tains an exact copy of their macro-colors; in other words, the macro-colors
need to be carried from the edges of the macro-tiles to the ir computation
layer’s input array.

Draft: June 5, 2025 at 14:45.

12.4 Building expanding simulating tilesets 111

121 Giving a clear and concise explanation
of the fixpoint construction is a difficult
writing exercise. After much reading, I de-
cided to follow the exposition of [Wes17].

122 And this, for every level ℓ ∈ ℕ. Half
the magic of the construction is happen-
ing here: we described a whole sequence
of tilesets (𝑇ℓ)ℓ∈ℕ that are nearly entirely
determined – thus, almost ready for simu-
lation – up to the content of the program
variables of their MCMC processors.
123 We use the wire field for both trans-
portingmacro-colors from the edges to the
input tape of a macro tile, and writing the
macro-colors on the edges of a macro-tile.
124 Containing𝑂(1) consecutive states of
an MCMC processor in an array of size
𝑁ℓ.

To proceed, we build a system of wires into the tiles of 𝑇ℓ by adding finitely
many color fields to their colors, one per wire that goes through the tile:

• Each wire carries a single bit 𝑏 ∈ {0, 1} from the border of the macro-
tile to an MCMC state processor of time 𝑡 = 0. In a cell, the wire can
carry this bit in a straight line or taking a turn:

𝑏 𝑏

𝑏

𝑏

𝑏

𝑏

𝑏

𝑏

…

• Together, a set of contiguous wires forms a cable. A cable carries a
whole macro-color from the corresponding edge of a macro-tile to the
input array (time 𝑡 = 0) of its computation layer.

Figure 12.10: The wires in a macro-tile (altogether, and individually).

The 𝑖th bit of a macro-color is dispatched
to the 𝑖th processor of the MCMC. In par-
ticular, onℤ2, each processor receives four
bits: one per macro-color.

Remark. Once again, we only sketch the wire layouts and do not formally specify
the disposition of the wires in a macro-tile. The important point is that whether
the color fields of a 𝑇ℓ-tile are blank or carry a bit of information, and if they do,
the directions from and to which they carry this bit, only depend of the position of
the tile into the macro-tile. Once again, see Remark “Computable layout”.

12.4.5 Recursion theorem121

Summary of the construction
[Wes17] Westrick, “Seas of squares with
sizes from aΠ0

1 set”.

At this point of the construction, for
every level ℓ ∈ ℕ, the colors used in the tiles of 𝑇ℓ contain the following
fields122:

• A position field, consisting of 2 log𝑁ℓ bits;
• 𝑂(1) wire fields123, consisting of 1 bits;
• 𝑂(1) processor fields124, consisting of 𝑂(log𝑁ℓ) bits.
We denote by lenℓ ∈ ℕ the total bit length of these fields.
Since we want 𝑇ℓ to simulate 𝑇ℓ+1, we need to consider the possible values

for the sequence (𝑁ℓ)ℓ∈ℕ. Mainly, the colors of 𝑇ℓ+1 need to fit in the com-
putation zone of 𝑇ℓ tiles, which implies that lenℓ+1 = log𝑁ℓ+1 ≪ 𝑁ℓ. For
this proof,𝑁ℓ = 2ℓ is enough; though later proofs will need a faster-growing
sequence. (We will also need the computations of the function recognizing
𝑇ℓ+1 to fit inside a macro-tile of size 𝑁ℓ ×𝑁ℓ, see below).

Remark (Computable layout). The geometric distribution of wires and macro-
colors in macro-tiles has not been described explicitely. Such a wire layout should
verify some constraints: for example, only finitely many wires should be allowed
to cross in any given cell.
In what follows, we fix a wire layout that is computable in the following sense:

given ℓ and (𝑖, 𝑗) ∈ ⟦𝑁ℓ⟧ × ⟦𝑁ℓ⟧, the number of wires and their directions in the
tile at position (𝑖, 𝑗) in the macro-tile should be computable in time polylog(𝑁ℓ).

Draft: June 5, 2025 at 14:45.

112 12 The expanding simulation framework

125 Since we operate with log-RAM algo-
rithms, should briefly mention how the
input is distributed into an input array:
we write 𝑒 in 𝐼[0], ℓ in 𝐼[1], and the argu-
ment (𝑐N, 𝑐W, 𝑐S, 𝑐E) is written on all 𝐼[𝑗]
for 𝑗 ≥ 2, four bits at a time (on ℤ2: one
per component of (𝑐N, 𝑐W, 𝑐S, 𝑐E)).

For exposition purposes, the rest of this chapter will assume that space is
horizontal and time is vertical in space-time diagrams.

Recognizing the tilesets (𝑇ℓ)ℓ∈ℕ The tilesets (𝑇ℓ)ℓ that were built in the
previous paragraphs can be recognized by a single function 𝑓(𝑒, ℓ, 𝑐N, 𝑐W, 𝑐S, 𝑐E)
uniformly, whose program acts as follows:
1. Compute 𝑁ℓ;
2. Check that each 𝑐N, 𝑐W,… is a string of length lenℓ;
3. Decode (𝑖, 𝑗) ∈ ⟦𝑁ℓ⟧ × ⟦𝑁ℓ⟧ from the position fields of (𝑐N, 𝑐W, 𝑐S, 𝑐E),
i.e. compute the position of the tile in the macro-tile;

4. Check the processor fields of (𝑐N, 𝑐W, 𝑐S, 𝑐E) to correctly contain 𝑂(1)
consecutive processor states (with variables of length 𝑂(log𝑁ℓ)), and
check the content of their pos variables (which should contain the
position 𝑖) and of their program variables (which should contain the
code 𝑒 ∈ {0, 1}∗). Finally, check that the respective processor fields of
the four colors (𝑐N, 𝑐W, 𝑐S, 𝑐E) draw a valid symbol of MCMC space-
time diagram;

5. Check the wire fields of (𝑐N, 𝑐W, 𝑐S, 𝑐E) to obey the wire layout for the
tile at position (𝑖, 𝑗) in a macro-tile of dimension 𝑁ℓ ×𝑁ℓ;

6. (Checking the input array) If the tile (𝑖, 𝑗) contains an initial processor
state for time 𝑡 = 0, check the variables appearing in the processor
fields: if pos = 0, check that input has value ℓ + 1; if pos > 0, check
that input is consistent with the four bits appearing in the four wire
fields.

7. If all checks were valid, accept. Otherwise, reject.
Notice that, for any fixed code 𝑒 ∈ {0, 1}∗, taking 𝑁ℓ = 2ℓ allows to

define a log-RAM algorithm125 for 𝑓 that runs in time polylog(𝑁ℓ) on inputs
(𝑒, ℓ, 𝑐N, 𝑐W, 𝑐S, 𝑐E).

Fixpoint theorem As mentioned in the overview of the whole expand-
ing tileset construction, we make 𝑇ℓ simulate 𝑇ℓ+1 by applying the fixpoint
theorem Proposition 4.30: there exists the code of a log-RAM program
𝑒 ∈ {0, 1}∗ such that:

• 𝜑𝑒(ℓ, 𝑐N, 𝑐W, 𝑐S, 𝑐E) = 𝑓(𝑒, ℓ, 𝑐N, 𝑐W, 𝑐S, 𝑐E) for all ℓ, 𝑐N, 𝑐W, 𝑐S, 𝑐E;
• Executions of 𝜑𝑒 and 𝑓(𝑒, ⋅, ⋅) have the same running time (up to a
constant factor).

By definining

𝑇ℓ = {(𝑐N, 𝑐W, 𝑐S, 𝑐E) ∈ ({0, 1}∗)4 ∶ 𝜑𝑒(ℓ, 𝑐N, 𝑐W, 𝑐S, 𝑐E) = ⊤},

one sees that 𝑇ℓ simulates 𝑇ℓ+1 with zoom factor 𝑁ℓ once the running time
of 𝜑𝑒(ℓ + 1, 𝑐N, 𝑐W, 𝑐S, 𝑐E) (which is polylog(𝑁ℓ+1)) is strictly smaller than
𝑁ℓ, which – by our choice of 𝑁ℓ – eventually holds for every ℓ that is larger
than some, say, ℓ0.

Final word

For ℓ large enough, the tilings of 𝑇ℓ follow an inductive structure: the tiles
of 𝑇ℓ organize themselves into macro-tiles in 𝑇ℓ-configurations, these macro-
tiles corresponding to 𝑇ℓ+1-tiles that, themselves, organize themselves into
macro-macro-tiles…
In what follows, we define macro-tiles of level ℓ ∈ ℕ any set of 𝑇ℓ0-tiles that

is the image of a 𝑇ℓ-tile by the iterated simulation map. By construction, and
for any ℓ ≥ ℓ0, macro-tiles of level ℓ + 1 are composed of𝑁ℓ ×𝑁ℓ macro-tiles
of level ℓ, thus making each valid 𝑇ℓ0-configuration define a hierarchy of
nested macro-tiles.

Draft: June 5, 2025 at 14:45.

12.4 Building expanding simulating tilesets 113

126 All𝑇ℓ0
-configurations are aperiodic be-

cause any period would need to shift any
ℓ-levelmacro-tile to another ℓ-levelmacro-
tile, which requires shifts of unbounded
lengths.

[DRS12] Durand, Romashchenko, and
Shen, “Fixed-point tile sets and their ap-
plications”.
[Wes17] Westrick, “Seas of squares with
sizes from aΠ0

1 set”.

At this point, the tileset 𝑇ℓ0 has little interest, apart from building aperi-
odic configurations126. However, there is a lot of available “free time” inside
the computation layer of the macro-tiles: 𝑒 runs in time polylog(𝑁ℓ+1) inside
macro-tiles of level ℓ, but the latter contains the computations of an MCMC
of size 𝑁ℓ that can simulate up to 𝑁ℓ steps of RAM computations. By em-
bedding more involved computations, the expanding simulation framework
allows for many applications (see e.g. [DRS12; Wes17, …]). In particular, in
the next Chapter 13, we use the available time and space to implement all the
computations of representations and inductions required in Theorem 10.11.

Remark 12.6 (Generalization toℤ𝑑). We suggest a straightforward adaptation
of the previous construction to tilings of ℤ𝑑: since 𝑑-dimensional macro-tiles have
2𝑑 adjacent neighboors, they will have 2𝑑 macro-colors that form a tuple which
we denote c. The macro-colors of level ℓ + 1 are strings of length at most𝑁𝑑−1

ℓ , as
they need to fit on a (𝑑 − 1)-dimensional facet; and macro-tiles of level ℓ embed,
in all their processor fields,𝑂(𝑁ℓ) steps of computations from a mesh-connected
computer of size 𝑁𝑑−1

ℓ .

Draft: June 5, 2025 at 14:45.

127 In Theorem 10.11, 𝛼 and 𝛽 were real
numbers. Up to taking 𝛼 and 𝛽 slightly
larger, we can assume they are rational.

128 Setting𝑁ℓ = 222ℓ will satisfy all later
requirements.

Proof of Theorem 10.11 13
This chapter contains the proof of Theorem 10.11. This proof is

developed within the expanding tileset setting from Section 12.4, with
computation layers implementing mesh-connected multicomputers
from Chapter 11.
Essentially, for a given representation function R, we make all

macro-tiles contain a representation of the pattern that appears below
it, and inductively check the consistency of these representations by
computing the associated induction I from children to parent macro-
tiles.

In this chapter, we prove Theorem 10.11. Let us fix a representation
functionR ∶ A∗𝑑 → {0, 1}∗ and an induction I ⊆ ({0, 1}∗)2𝑑 × {0, 1}∗ forR.
We also fix ⟨I⟩ ∈ {0, 1}∗ a log-RAM algorithm for I, and 𝛼 ∈ ℚ+ and 𝛽 ∈ ℚ+
verifying the hypotheses of Theorem 10.11127 on ⟨I⟩: in particular, we have
𝛼 < 𝑑 − 1 and 𝛼 ⋅ 𝛽 < 𝑑 − 1. In the proof, we also denote 𝛾 = 𝛼⋅𝛽

𝑑−1 < 1.
We will build a tileset 𝑇 whose valid tilings form an SFT that factors onto

𝑋R,I. The tiles of 𝑇will be designed as in the expanding tileset construction,
but we considerably extend the macro-colors so that all macro-tiles will
check the inductive validity of the “pixel pattern” on which they sit.
To fix notations, the tileset 𝑇ℓ will simulate 𝑇ℓ+1 with zoom factor 𝑁ℓ for

every ℓ ∈ ℕ.128We also denote 𝐿ℓ = ∏ℓ−1
𝑗=0 𝑁𝑗 the pixel zoom factor, i.e. the

zoom factor at which 𝑇0 simulates 𝑇ℓ.

13.1 Overview of the construction

(For clearer exposition, the following paragraphs focus on the case 𝑑 = 2.
The construction is then written in full generality on arbitrary ℤ𝑑.)

Reprensenting patterns in macro-tiles Before proving Theorem 10.11,
let us briefly sketch the proof on ℤ2 to clarify the ideas involved.Mainly, our
construction will consists in:
1. Superimposing the configurations ofAℤ2 with the configurations of a
tileset 𝑇0 obtained by the expanding simulation construction (i.e. that
simulates some tileset 𝑇1, 𝑇2,…);

2. Make the macro-tiles of level ℓ contain a representation of the pattern
of size 𝐿ℓ × 𝐿ℓ (and on the alphabetA) upon which they sit.

By computing the representations inductively from children to parentmacro-
tiles, we will ensure that only inductively valid patterns ofA∗2 can appear
below a macro-tile. This will result in a subshift𝑋 ⊆ Aℤ2× 𝑇 ℤ2

0 that is local,
because 𝑇0 is a tileset; and whose natural projection toAℤ2 yields the desired
subshift𝑋R,I.

The main obstacle in implementing this proof sketch appears in the in-
ductive computations of the representations: since a parent macro-tile is
composed of𝑁ℓ×𝑁ℓ childrenmacro-tiles, but the induction I only computes
representations for 2 × 2 adjacent subrepresentations, we actually have to
embed several consecutive levels of induction inside a parent macro-tile,

Draft: June 5, 2025 at 14:45. 115

116 13 Proof of Theorem 10.11

Figure 13.1: A parentmacro-tile (drawn as𝑁ℓ×𝑁ℓ children) and its division
into groups of 2 × 2 and 4 × 4 children macro-tiles.

129 For clarity, recall that 𝐿ℓ is the pixel
size of a macro-tile, and that 𝐿ℓ+1 = 𝐿ℓ ⋅
𝑁ℓ.

130 Indeed, 2log𝑁ℓ ⋅ 𝐿ℓ = 𝐿ℓ+1.

while the time-complexity of a single induction step is already nearing the
computation capacities of the macro-tiles.

A hierarchy of nested computations By taking 𝑁ℓ to be a power of 2,
a natural recursive structure appears to inductively compute a representa-
tion of an 𝐿ℓ+1 × 𝐿ℓ+1 pattern from 𝑁ℓ ×𝑁ℓ representations of its 𝐿ℓ × 𝐿ℓ
subpatterns129:

• Divide the parent macro-tile into 𝑁ℓ
2 × 𝑁ℓ

2 groups of 2 × 2 children
macro-tiles. Since each of these children macro-tile possesses one
representation from a pattern of size 𝐿ℓ × 𝐿ℓ, each of these 2 × 2
groups of tiles can compute a step from the induction I. As a result,
the parent macro-tile possesses 𝑁ℓ

2 × 𝑁ℓ
2 representations of patterns

of size 2𝐿ℓ × 2𝐿ℓ, which we call “intermediate representations”.
• Then, divide the parentmacro-tile into 𝑁ℓ

4 × 𝑁ℓ
4 groups of 4×4 children

macro-tiles. Since each of these 4 × 4 tiles cover 2 × 2 intermediate
representations from the previous item, each of these 4 × 4 groups of
tiles can compute a step from the induction I. As a result, the parent
macro-tile possesses 𝑁ℓ

4 × 𝑁ℓ
4 representations of patterns of size 4𝐿ℓ ×

4𝐿ℓ, which form newer and larger “intermediate representations”.
• …
• After log𝑁ℓ divisions of the parent macro-tile into successive groups
of 2𝑘 × 2𝑘 children macro-tiles, the 𝑁ℓ ×𝑁ℓ children macro-tile col-
lectively hold a representation from a pattern of size130 𝐿ℓ+1 × 𝐿ℓ+1.
By definition of the induction I, this representation is a representa-
tion of the pattern covered by the parent macro-tile, and should be
communicated to its computation layer.

Inductively validity The previous paragraphs will correctly check that
patterns covered by macro-tiles admit a valid representation. To complete
the proof, we will need to consider condition (𝑖𝑖𝑖) from the definition of
“inductive validity” (Definition 10.5):

• For every 0 ≤ 𝑘 < 𝑛 and every square 𝐼 = i+⟦2⟧2 ⊆ ⟦2𝑛−𝑘⟧2 indexing 2×2
adjacent squares (𝐶𝑘

i)i∈𝐼, there exists 𝑟 ∈ {0, 1}∗ such that I((𝑟𝑘i)i∈𝐼, 𝑟).
where 𝐶𝑘

i is the element at position i ∈ ⟦2𝑛−𝑘⟧ in the partitionning of ⟦2𝑛⟧2

into squares of size 2𝑘 × 2𝑘. Intuitively, this condition checks the validity of
arbitrary squares of 2 × 2 adjacent intermediate representations 𝑟𝑘i .
To implement this condition in our construction, we will make every set

of 2× 2 groups of 2𝑘 ×2𝑘 children macro-tiles from the previous paragraphs
perform a single step of induction I on the intermediate representations
they hold.
The chapter implements this proof sketch on arbitrary ℤ𝑑 for 𝑑 ≥ 2.

Draft: June 5, 2025 at 14:45.

13.2 Distributed computations and subarray computation layers 117

131 Since such a subarray will need to con-
tain at least a complete computation of the
induction I on the representations of pat-
terns of size ⟦𝐿ℓ⟧𝑑, picking𝑀ℓ = 𝑂(𝐿𝛾

ℓ)
will be enough.

𝑡 = 0, 1, 2;
𝑡 = 3, 4, 5;
𝑡 = 6, 7, 8;
𝑡 = 9, 10, 11;
𝑡 = 12, 13, 14;
𝑡 = 15, 16, 17;
𝑡 = 18, 19, 20;
𝑡 = 21, 22, 23;

Figure 13.2: An MCMC subarray compu-
tation of size𝑀ℓ×𝑀ℓ inside amacro-tile.
132 The precise number 2 log𝑁ℓ+1 will be
justified later.

133 As noticed in Note 11.10, space-time
diagrams of mesh-connected computers
are local.

134 Since we define all levels of macro-
tiles simulataneously, this paragraph only
means that macro-tiles of level ℓ only
contain 2 log𝑁ℓ such fields, and not
2 log𝑁ℓ+1.

13.2 Distributed computations and subarray
computation layers

In the expanding tileset construction described in Chapter 12, a parent
macro-tile embedded in its computation layer the whole space-time diagram
of a mesh-connected multicomputer of size 𝑁𝑑−1

ℓ for 𝑂(𝑁ℓ) steps of compu-
tation. In this section, we provide an implementation of distributed MCMC
computations accross several macro-tiles: these new computation layers will
contain a subarray ofMCMC computations, and corresponding fields will be
added to the macro-colors to ensure the consistency of these computations
accross adjacent macro-tiles.

13.2.1 Subarrays of MCMC computations

Let us fix some𝑀ℓ+1 ∈ ℕ (whose value will be chosen later131). Among the
⟦𝑁ℓ⟧𝑑 children macro-tiles composing a parent macro-tile of level ℓ + 1, we
pick a block of ⟦𝑀ℓ+1⟧𝑑 adjacent children macro-tiles to contain subarray
computation layers. More precisely:

• Each children tile will contain 2 log𝑁ℓ+1 processor fields in their macro-
colors132, in order to form together as many subarray computation layers
of the parent macro-tile.

• Each processor field contains the states of an MCMC processor during
𝑂(1) consecutive steps of computations. In the processor field of index
1 ≤ 𝑘 ≤ log𝑁ℓ+1, the MCMC processor operates on variables of word
length 𝑂(log(2𝑘 ⋅ 𝑀ℓ+1)), in accordance with the size of the mesh-
connected computers whose space-time diagrams will be distributed.

13.2.2 Wiring subarrays of adjacent macro-tiles

To continue the computations of the mesh-connected computers seamlessly
accross the subarrays of adjacent macro-tiles, we draw a system of wires
from the borders of the subarrays to new macro-color fields of the parent
macro-tile. More precisely:

• For each subarray computation layer of index 1 ≤ 𝑘 ≤ log𝑁ℓ+1, we
add a corresponding processor wire field of size 𝑂(log(2𝑘 ⋅ 𝑀ℓ+1)) that
can transport 𝑂(1) processor states.
Together, these processor wire fields should draw cables from the
borders of the subarrays to the macro-colors of the parent macro-tile.

• For each subarray computation layer of index 1 ≤ 𝑘 ≤ log𝑁ℓ+1, we add
a corresponding subarray computation field to the parent macro-tile. It
contains 𝑂(𝑀𝑑−1

ℓ+1) processor states, which is the amount of processor
states appearing on a facet133 of the subarray of size ⟦𝑀ℓ+1⟧𝑑.

Remark. Be mindful that the two items operate on distinct levels of macro-colors:
the wires and the processors appear in the macro-colors of the childrenmacro-tiles
(of level ℓ), and together draw the abstract subarray computation layers of the
parent macro-tile. On the other hand, the subarray computation fields appear
in the macro-colors of the parent macro-tile134 (of level ℓ + 1).

Note 13.1. In the cases where a subarray appears on the border of the mesh-
connected multicomputer, the continuity of the computation should not be enforced
in the corresponding direction.
As it is useful to have the borders of a macro-tile’s subarrays appear in its macro-
colors (so that its main computation layer can use it in its computations, for
example), we actually make each subarray computation field contain the borders
of both adjacent subarrays, so that continuity of the computation is not enforced
by default (and will, thus, be left to the discretion of the macro-tile’s computation
layer). See Paragraph ‘Clustering and induction computations’ on page 120.

Draft: June 5, 2025 at 14:45.

118 13 Proof of Theorem 10.11

Figure 13.3: Distributing the computations of a mesh-connected multicom-
puter accross the subarrays of adjacent macro-tiles.

At this point of the proof, each children macro-tile (of level ℓ) contains
2 log𝑁ℓ subarray computation layers of indices 𝑘 ∈ [1 .. 2 log𝑁ℓ]. Conceptu-
ally, we group all the subarrays of the same layer 𝑘 ∈ [1 .. 2 log𝑁ℓ] together
and say that the reunion of all the subarray computation fields of index 𝑘
from all the children macro-tiles forms the 𝑘th distributed computation layer
of their parent macro-tile.

13.3 Implementation of inductive
representations in macro-tiles

Now that macro-tiles possess additional computation capacities, we can
implement the computations checking the inductive validity of the pattern
that will be covered by the macro-tiles.

13.3.1 Adding representations to the input arrays

Since wewantmacro-tiles of level ℓ to contain a representation of the pattern
of size ⟦𝐿ℓ⟧𝑑 they cover, we begin by adding a new parameter 𝑟 ∈ {0, 1}∗
to the function computed by the macro-tiles of level ℓ. In other words, a
well-formed input array should now encode a tuple of the form

(𝑒, ℓ, 𝑟, c).135135Where c is a tuple of 2𝑑macro-tiles.

As said parameter 𝑟 ∈ {0, 1}∗ is supposed to contain a representation of a
pattern of size ⟦𝐿ℓ⟧𝑑, by our hypothesis on the lengths of the representations
given by the representation functionR, we can actually bound the length of
𝑟 by 𝑂(𝐿𝛼

ℓ).

At this point of the construction, a parent macro-tile (of level ℓ + 1) is
composed of 𝑁𝑑

ℓ children macro-tiles (of level ℓ) that all contain a represen-
tation. The rest of the construction essentially consists in ensuring that the
representation of a parent macro-tile is consistent with the representations
of its children by implementing log𝑁ℓ successive levels of inductions.

Draft: June 5, 2025 at 14:45.

13.3 Implementation of inductive representations in macro-tiles 119

136Which corresponds to the subrepresen-
tation inputs of the induction I.

137 Thus, we naturally use the same nota-
tions.

13.3.2 Addressing scheme

In order to describe the implementation of these log𝑁ℓ successive levels of
induction,we need to define a computable addressing scheme of the children
macro-tiles inside their parent.

Layering In the overview of the construction, we sketched that parent
macro-tiles (of level ℓ + 1) will need to implement log𝑁ℓ successive levels
of induction computations I. To this end, we use log𝑁ℓ levels of layers from
the parent macro-tiles.
More precisely, recall that we call distributed computation layer of index

1 ≤ 𝑘 ≤ 2 log𝑁ℓ the reunion of the subarray computation layers of index 𝑘
from all the children macro-tiles. We will implement the 𝑘th level of induc-
tions by using the distributed computation layer of index 𝑘.

Clustering We also sketched in this overview that the 𝑘th level of induc-
tions should group children macro-tiles into groups of (2𝑘)𝑑 adjacent tiles;
and that the next level of inductions should merge 2𝑑 adjacent groups of the
previous level together136, to form groups of (2𝑘+1)𝑑 children macro-tiles.
To this end, we define an addressing scheme that we call clustering, which

consists in addressing the groups of children macro-tiles, and addressing
the position of said children macro-tiles inside their groups. This definition
is reminiscent of Note 10.4, because it implements the very same idea137:

Definition 13.2. Consider a childrenmacro-tile (of level ℓ) at position i ∈ ⟦𝑁ℓ⟧𝑑

inside its parent. For an index 0 ≤ 𝑘 ≤ log𝑁ℓ, we say that:
• The children tile i belongs to the cluster 𝐶𝑘

i′ of index i′ = ⌊ i
2𝑘 ⌋;

• The position of the children tile i in its cluster 𝐶𝑘
i′ is i− 2𝑘⋅ i′.

𝐶2
(0,0)

𝐶1
(0,0)

𝐶1
(0,1)

𝐶1
(1,0)

𝐶1
(1,1)

𝐶0
(0,0)

𝐶0
(0,1)

𝐶0
(0,2)

𝐶0
(0,3)

𝐶0
(1,0)

𝐶0
(1,1)

𝐶0
(1,2)

𝐶0
(1,3)

𝐶0
(2,0)

𝐶0
(2,1)

𝐶0
(2,2)

𝐶0
(2,3)

𝐶0
(3,0)

𝐶0
(3,1)

𝐶0
(3,2)

𝐶0
(3,3)

Figure 13.4: Clustering of the first three levels of computations.

This clustering systemprovides the correct partitionning of the distributed
computation layers into nested groups of (2𝑘)𝑑 adjacent childrenmacro-tiles:

Claim. Fix a distributed computation layer of index 1 ≤ 𝑘 ≤ log𝑁ℓ:

(i) A cluster 𝐶𝑘
i′ is composed of ⟦2𝑘⟧𝑑 children macro-tiles;

(ii) Inside this layer, cluster indices range in
⟦𝑁ℓ

2𝑘
⟧𝑑;

(iii) The cluster 𝐶𝑘
i′ is the reunion of 2𝑑 clusters from the layer of index 𝑘 − 1:

𝐶𝑘
i′ = ⋃

j∈⟦2⟧𝑑
𝐶𝑘−1
2⋅i′+j.

13.3.3 Computing successive induction steps

We denote by 𝑟i the representation that appears on the input array of the
children macro-tile of index i ∈ ⟦𝑁ℓ⟧𝑑; and by 𝑟 ∈ {0, 1}∗ the representation
that appears on the input array of the parent macro-tile. we want to ensure
that 𝑟 can be obtained by applying log𝑁ℓ steps of the induction I on the
representations (𝑟i)i∈⟦𝑁ℓ⟧𝑑 of the children macro-tiles.

Draft: June 5, 2025 at 14:45.

120 13 Proof of Theorem 10.11

138More precisely, we have:

𝐶𝑘
i′ = ⋃

j∈⟦2⟧𝑑

𝐶𝑘−1
2⋅i′+j

for i′ ∈
⟦𝑁ℓ

2𝑘

⟧𝑑.

139 As wires have already been used inside
the expanding tileset construction, the im-
plementation of these new wires should
hopefully be clear.

Clustering and induction computations The clustering scheme divides
the distributed computation layer of index 1 ≤ 𝑘 ≤ log𝑁ℓ into blocks of
⟦2𝑘⟧𝑑MCMC space-time subarrays. We implement the computations of the
induction I into the children macro-tiles of these clusters as follows:

• Continuity of the space-time diagram is enforced accross adjacent chil-
dren macro-tiles’ subarray computation layers of index 1 ≤ 𝑘 ≤ log𝑁ℓ
if and only if they belong in the same cluster 𝐶𝑘

i′ .
In other words, the clusters of the distributed computation layer of
index 1 ≤ 𝑘 ≤ log𝑁ℓ now define blocks of ⟦2𝑘⟧𝑑 subarrays forming the
distributed space-time diagrams of mesh-connected multicomputers
of size ⟦2𝑘 ⋅ 𝑀ℓ⟧𝑑−1 during 𝑂(2𝑘 ⋅ 𝑀ℓ) computation steps.

• The processors implement the MCMC program 𝑒RAM ∈ {0, 1}∗ that
simulates log-RAM programs with constant factor overhead from
Theorem 11.8.

• Since each children macro-tile can compute its position i− 2𝑘 ⋅ i′ in
its cluster, the children macro-tiles covering the time step 𝑡 = 0 in
the distributed space-time diagram check, in their subarray computa-
tion field, the value of the variable pos; and that the variable program
contains the log-RAM program ⟨I⟩.

At this point of the construction, the children macro-tiles in a cluster
𝐶𝑘
i′ form, with their subarray computation layers of index 𝑘, the space-time
diagram of size ⟦2𝑘𝑀ℓ⟧𝑑 of a mesh-connected computer that simulates the
induction I for (2𝑘𝑀ℓ)𝑑−1 computation steps.

Communication between adjacent layers The nested structure of clus-
ters between adjacent layers (any cluster from the 𝑘th layer is the reunion
of 2𝑑 clusters from the (𝑘 − 1)th layer138) follows the structure imposed by
the induction I ∶ ({0, 1}∗)2𝑑 × {0, 1}∗ → {⊤,⊥} (which is a predicate that
associates representations of larger patterns from 2𝑑 given representations
of their subpatterns).
To ensure that the log𝑁ℓ layers of distributed computations perform the

desired log𝑁ℓ levels of successive inductions, we wire the representation
validated by eachmesh-connected multicomputer of the (𝑘−1)th distributed
computation layer at position, say, 2 ⋅ i′ + j for j ∈ ⟦2⟧𝑑, to the corresponding
input argument of the MCMC of index i′ in the 𝑘th layer.

𝑟(6,8) 𝑟(7,8)

𝑟(6,9) 𝑟(7,9)

𝐶1
(3,4)

Figure 13.5: Wiring between children macro-tiles and the first layer.

Of course, in the actual figure in dimen-
sion 𝑑 = 2, the computation layer of the
childrenmacro-tiles and the clusters of the
first layer are actually superimposed. The
view here is exploded to make the reading
easier.

More precisely, for each layer of index 1 ≤ 𝑘 ≤ log𝑁ℓ, we draw a system of
wires thatmaps input arrays of a cluster’sMCMCon the (𝑘−1)th distributed
computation layer to the corresponding argument in the input array of the
parent cluster’s MCMC on the 𝑘th layer. These wires are drawn using a
corresponding subarray wire field (one per layer of index 1 ≤ 𝑘 ≤ log𝑁ℓ),
which will appear in some children macro-tiles139.

Draft: June 5, 2025 at 14:45.

13.3 Implementation of inductive representations in macro-tiles 121

140 The sizes of all the arguments appear-
ing in the input array of the parent macro-
tile are known, as are the sizes of argu-
ments in the input array of the distributed
MCMC. This allows to easily compute
the starting and ending position of these
wires, leading to an efficiently computable
wire layout.

141 The children macro-tiles directly com-
municate with each other through these
new subarray wire fields on their macro-
colors, irrelevantly of their respective par-
ent macro-tile.
142 Or, if 𝑘 = 0, the representations 𝑟i
directly contained in the children macro-
tiles.

Remark. The representations given as input (resp. validated) in the clusters
of the (𝑘 − 1)th layer all have length 𝑂(2𝑘−1 ⋅ 𝐿ℓ)𝛼 (resp. 𝑂(2𝑘 ⋅ 𝐿ℓ)𝛼) by our
hypothesis on the lengths of the representation function R. In particular, the
starting and ending position of the associated cables are computable, and there
exists efficiently computable wiring layouts for all the associated log𝑁ℓ layers.

For a fixed cluster 𝐶𝑘
i′ , the children macro-tiles composing 𝐶𝑘

i′ contain, on
their 𝑘th subarray computation layer, the distributed space-time diagram of
anMCMC that validates a representation, which we denote 𝑟(𝑘)i′ . With these
subarray wire fields, we just ensured that this representation is obtained by 𝑘
iterated computations of the induction I on all their representations 𝑟i for
i ∈ 2𝑘 ⋅ i′ + ⟦2𝑘⟧𝑑.

Communication to the parent macro-tile The last distributed compu-
tation layer of index 𝑘 = log𝑁ℓ contains, by construction, the space-time
diagram of amesh-connectedmulticomputer of size ⟦𝑁ℓ ⋅𝑀ℓ⟧𝑑 that computes
the induction I, distributed among all the ⟦𝑁ℓ⟧𝑑 children macro-tiles.
To ensure that the representation 𝑟 of the parent macro-tile is obtained

from the representations (𝑟i)i∈⟦𝑁ℓ⟧𝑑 of the childrenmacro-tiles, we add wires
between the input array of the parent macro-tile and the input array of this
mesh-connected multicomputer appearing in the distributed computation
layer of index 𝑘 = log𝑁ℓ. As before, we implement these wires by adding a
subarray-to-parent wire field to some140 of the children macro-tiles.

Remark. These wires take as input pieces of the representation 𝑟when distributed
among in the distributed computation layer of the parent macro-tile, i.e. into
pieces of size ⟦𝑀ℓ⟧𝑑; and outputs pieces of the representation 𝑟when distributed to
some processors of the computation layer of the parent macro-tile, i.e. into pieces
of size 𝑂(log𝑁ℓ). Thus, these wires slightly differ from our previous wires in that
they also “split” to distribute blocks of size ⟦𝑀ℓ⟧𝑑 into blocks of size 𝑂(log𝑁ℓ).

13.3.4 Inductive validity of the representations

To verify condition (𝑖𝑖𝑖) of Definition 10.5, every block of 2𝑑 intermediate
representations 𝑟(𝑘)i′ validated by the inductions I from all the first log𝑁ℓ
layers of distributed computations must be able to validate an additional
step of induction I ∶ ({0, 1}∗)2𝑑 × {0, 1}∗ → {⊤,⊥}.
To implement this condition, we use the remaining log𝑁ℓ distributed

computation layers and add another log𝑁ℓ layers of subarray wires. For an
index 0 ≤ 𝑘 < log𝑁ℓ:

• Continuity of the space-time diagram on the distributed computation
layer of index 1+log𝑁ℓ+𝑘 is enforced accross adjacent childrenmacro-
tiles’ subarray computation layers of index 𝑘 if and only if they belong
in the same cluster 𝐶𝑘

i′ .
In other words, the clusters of the distributed computation layer of
index 1 + log𝑁ℓ + 𝑘 now define blocks of ⟦2𝑘⟧𝑑 subarrays forming
distributed space-time diagrams of mesh-connected multicomputers.

• These newMCMCs implement the program 𝑒RAM ∈ {0, 1}∗ in their
processors and simulate the log-RAM program ⟨I⟩.

• The new subarray wires on the layer of index 1 + log𝑁ℓ + 𝑘map the
arguments of theMCMCappearing in the cluster𝐶𝑘

i′ of the distributed
computation layer of index 1+ log𝑁ℓ +𝑘 with the representations 𝑟(𝑘)i″
validated by the adjacent clusters𝐶𝑘

i″ (for i″ ∈ i+⟦2⟧𝑑, including accross
the border of the parent macro-tile141) on their distributed computation
layer of index 𝑘.142

Draft: June 5, 2025 at 14:45.

122 13 Proof of Theorem 10.11

143 The position in the parent macro-tile.
144 One processor of a mesh-connected
multicomputer of size𝑂(𝑁𝑑

ℓ).

145 Carrying one bit from the parent’s
macro-colors to one children macro-tile
from the input area of the MCMC.
146 That contain the borders of MCMC
subarrays of size ⟦𝑀ℓ⟧𝑑.

147 To make 𝑓 a log-RAM program, we
should briefly mention how the input tu-
ple is distributed to the RAM input ar-
ray: 𝑒 is written in 𝐼[0], ℓ is written in
𝐼[1], 𝑟 ∈ {0, 1}𝑂(𝐿𝛼

ℓ) is written into the
next consecutive memory cells as chunks
of length 𝑂(log𝑁ℓ), and c is written on
the next consecutive memory cells 2𝑑 bits
at time.

In other words, all the intermediar representations 𝑟(𝑘)i″ for i″ ∈ i′ + ⟦2𝑘⟧𝑑
appear as the input arguments of an additional induction step I. It is com-
puted within the MCMC space-time diagram that is distributed on the
subarray computation layer of index 1+ log𝑁ℓ +𝑘 of the children macro-tiles
composing the cluster 𝐶𝑘

i′ .

13.4 Final considerations and fixpoint theorem

Finally, let us denote by𝐾 ∈ ℕ an integer whose value will be determined
later (it will be used tomanage constants resulting from𝑂(⋅) considerations).
A well-formed input tape in a macro-tile contains (in this order) a tuple:

(𝑒,𝐾, ℓ,𝑚, c)

where 𝑒 ∈ {0, 1}∗ is a log-RAM program,𝐾 ∈ ℕ is a fixed constant, ℓ ∈ ℕ
is an integer representing the level of the macro-tile,𝑚 ∈ {0, 1}∗ is a string
of size 𝑂(𝐿𝛼

ℓ) and c is a tuple of 2𝑑 binary strings containing the following
fields:

• A position field143 of length 2 log𝑁ℓ;
• A computation field144 of length 𝑂(log𝑁ℓ) bits; and 2 log𝑁ℓ+1 proces-
sor fields, each containing 𝑂(1) consecutive processor states of size
𝑂(log(𝑁ℓ+1 ⋅ 𝑀ℓ+1)) bits;

• A wire field145 of length 𝑂(1) bits; and 2 log𝑁ℓ+1 processor wire fields,
each of length 𝑂(log(𝑁ℓ+1 ⋅ 𝑀ℓ+1)) bits;

• 2 log𝑁ℓ subarray computation fields146, each containing 𝑂(𝑀𝑑−1
ℓ) pro-

cessor states of length 𝑂(log(𝑁ℓ ⋅ 𝑀ℓ)) bits;
• 2 log𝑁ℓ subarray wire fields, each of length 𝑂(𝑀𝑑−1

ℓ ⋅ log(𝑁ℓ ⋅𝑀ℓ)) bits;
• A subarray-to-parent wire field of length 𝑂(𝑀𝑑−1

ℓ ⋅ log(𝑁ℓ ⋅ 𝑀ℓ)).
In what follows, we set:

𝑁ℓ = 222
ℓ+𝐾 and 𝑀ℓ = 𝐾 ⋅ 𝐿𝛾

ℓ .

for𝐾 the constantmentioned above.Notice that,when given𝐾 and ℓ,𝑁ℓ and
𝐿ℓ can be computed in time polylog(𝑁ℓ). By padding the input fields with
blank symbols if necessary, we assume that each field has a fixed length that
only depends on ℓ, and that can be computed in time polylog(𝑁ℓ). (In other
words: the constants associated to each 𝑂(⋅) are known and hardcoded.)
Let us now describe the log-RAM program appearing on the program

tape. Let 𝑓(𝑒,𝐾, ℓ, 𝑟, c) be the following algorithm147:
1. Layout of parent macro-tiles:

(i) Given𝐾 and ℓ, compute 𝑁ℓ, 𝐿ℓ,𝑁ℓ+1, 𝐿ℓ+1, 𝐿ℓ+2 and𝑀ℓ;
Time: polylog(𝑁ℓ)

(ii) Check that each color 𝑐⋅ is a string containing all the aformen-
tioned fields, and that each field is of the correct length;
Time: 𝑂(𝑀𝑑−1

ℓ ⋅ log𝐿ℓ+1)
(iii) Decode 𝑖 ∈ ⟦𝑁ℓ⟧𝑑 from the position field of (𝑐N, 𝑐W, 𝑐S, 𝑐E), i.e. com-

pute the position of this tile in the parent macro-tile;
Time: polylog(𝑁ℓ)

(iv) Check the computation field: the computation field should encode
𝑂(1) consecutive computation step of an MCMC processor oper-
ating on variables of word length 𝑂(log𝑁ℓ), running the MCMC
program 𝑒RAM ∈ {0, 1}∗ (from Theorem 11.8), and have a vari-
able program containing the RAM program 𝑒 ∈ {0, 1}∗ and a
variable pos containing the position 𝑖 ∈ ⟦𝑁ℓ⟧𝑑 decoded in the
previous item;
Time: polylog(𝑁ℓ)

Draft: June 5, 2025 at 14:45.

13.4 Final considerations and fixpoint theorem 123

148 Since 𝑟has fixed length𝑂(𝐿𝛼
ℓ), the tile

at position i which variable of the RAM
input array it is supposed to see.

149Which directly take as input the chil-
dren macro-tiles.

(v) Considering the input variable of the processor from the compu-
tation field, check – depending on the position i – that it contains
𝐾 (if the tile has position i = (0, 0…)), ℓ + 1 (if i = (1, 0…)), or
the correct slice148 of 𝑟;
Time: polylog(𝑁ℓ)

(vi) Check the wire field: compute the wire layout for macro-tiles of
size𝑁𝑑

ℓ and check that thewire field is consistent with the position
𝑖 ∈ ⟦𝑁ℓ⟧𝑑 of said layout;
Time: polylog(𝑁ℓ)

(vii) Check the processor and processor wire fields: in particular, check
that each of the 𝑂(log𝑁ℓ+1) free computation fields correctly en-
code one computation step of a processor operating on variables
of word length 𝑂(log𝐿ℓ+2); and compute the 𝑂(log𝑁ℓ+1) free
wire layouts and check that that the free wire fields correctly en-
code wires at position 𝑖 ∈ ⟦𝑁ℓ⟧𝑑 from said layouts;
Time: polylog(𝑁ℓ)

2. Checking the distributed computations of the induction I

(i) For every 0 ≤ 𝑘 ≤ log𝑁ℓ, compute all the clusters and clus-
ter positions (𝐶𝑘

i′ , i″) depending on the position of the children
macro-tile i;
Time: polylog(𝑁ℓ)

(ii) Check the subarray computation fields of c: they should contain
𝑂(𝑀𝑑−1

ℓ) processor states from the border of an MCMC space-
time subarray. These processors should run the MCMC pro-
gram 𝑒RAM ∈ {0, 1}∗ and operate on variables of word length
𝑂(log(2𝑘 ⋅ 𝑀ℓ)). Depending on the position i″ of the processor
in its cluster on the 𝑘th cluster, continuity of the computations
should be enforced accordingly, as well as the pos variable of each
processor. The program variable should contain the log-RAM
program ⟨𝐼⟩ ∈ {0, 1}∗;
Time: 2 log𝑁ℓ ⋅ 𝑂(𝑀𝑑−1

ℓ ⋅ log𝐿ℓ+1)
(iii) Check all subarray wire fields: compute all the wire layouts be-

tween clusters and check that the subarray wire fields of the tile c
correctly follow these layouts at position 𝑖 ∈ ⟦𝑁ℓ⟧𝑑 in the parent
macro-tile. If i″ is an input or output position for a wire on the 𝑘th
layer, check the consistency of the 𝑘th subarray wire field with the
corresponding subarray computation field to ensure that correct
data is copied on the wires. For layers 1 and 1 + log𝑁ℓ,149 check
that the argument representation 𝑟 is correctly written on the
wires.
Time: 2 log𝑁ℓ ⋅ 𝑂(𝑀𝑑−1

ℓ ⋅ log𝐿ℓ+1)
(iv) Check the subarray-to-parent field: compute the wire layout of the

subarray-to-parent wires and check that the subarray-to-parent
field of the tile (c) is consistent this layout at position 𝑖 ∈ ⟦𝑁ℓ⟧𝑑

in the parent macro-tile. If i is an input (resp. output) position
for these wires, check the consistency of the subarray-to-parent
field with the subarray computation field (resp. computation field);
Time: 𝑂(𝑀𝑑−1

ℓ ⋅ log𝐿ℓ+1)

3. If one check fails, reject the computation. Otherwise, accept.
We complete the construction as in Chapter 12, by making the function

𝑓 (which recognizes the children tiles) run on its own code 𝑒 ∈ {0, 1}∗ (so
that parent macro-tiles will compute the same recognizing function).
More precisely, we apply the runtime-preserving fixpoint theorem of log-

RAM programs Proposition 4.30 on 𝑓(𝑒,𝐾, ℓ, 𝑟, c): there exists a log-RAM
program 𝑒 ∈ {0, 1}∗ such that 𝑓(𝑒,…) = 𝜑𝑒(…), and 𝑓(𝑒,…) and 𝜑𝑒(…) have
the same running time (up to a constant factor).

Draft: June 5, 2025 at 14:45.

124 13 Proof of Theorem 10.11

150 Actually, verifying condition (𝑖𝑖𝑖) of
Definition 10.5 requires careful consid-
erations of the induction steps computed
at levels ℓ′ ≤ ℓ and accross macro-tiles of
level ℓ. Which works as intended, because
the wires described in Section 13.3.4 join
all hypercubes of 2𝑑 macro-tiles of level ℓ′,
even if they have distinct parent macro-tiles.

In order to address considerations involving time overheads from 𝑂(⋅), let
𝐾 ∈ ℕ be a constant such that, by defining 𝑁ℓ = 222

ℓ+𝐾,𝑀ℓ = 𝐾 ⋅ 𝐿𝛾
ℓ and

hardcoding all 𝑂(⋅) factors in the algorithm 𝑓, we verify all the following
constraints for every ℓ ∈ ℕ:

• Parent macro-colors fit inside parent macro-tiles: the size of the macro-
colors of level ℓ + 1 verifies 𝑂(𝑀𝑑−1

ℓ+1 ⋅ log𝐿ℓ+2) < 𝑁𝑑−1
ℓ ;

• Computations of𝑇ℓ+1-tiles fit insidemacro-tiles of level ℓ+1: the algorithm
𝑒 has time complexity 𝑂(𝑀𝑑−1

ℓ+1 ⋅ log(𝐿ℓ+2)) < 𝑁𝑑−1
ℓ ;

• Clusters are large enough to contain the corresponding induction compu-
tations: the induction I on patterns of size ⟦2𝑘 ⋅ 𝐿ℓ⟧𝑑 is computed in
time 𝑂((2𝑘 ⋅ 𝐿ℓ)𝛼⋅𝛽) < (2𝑘 ⋅ 𝑀ℓ)𝑑−1;

and all these constraints can be satisfied because, as 𝛾 < 1, we asymptotically
have 𝐿𝛾

ℓ+1 ⋅ log𝐿ℓ+2 ≪ 𝑁ℓ.

If we were to define
𝑇ℓ = {c ∈ ({0, 1}∗)2𝑑 ∶ ∃𝑟 ∈ {0, 1}∗, 𝜑𝑒(𝐾, ℓ, 𝑟, c) = ⊤},

the attentive reader might notice that 𝑇ℓ does not simulate 𝑇ℓ+1 (at least, for
the definition of simulation we introduced earlier):

• Validity of cluster computations: we should actually restrict 𝑇ℓ to macro-
colors c whose subarray computation fields are actually borders of valid
space-time subarrays of MCMC computations.
We denote by 𝑉∶ (𝐾, ℓ, c) ↦ {⊤,⊥} the function checking whether the
cluster computation fields of a macro-tile c can actually be filled with
correct MCMC space-time subarrays.

• Recursive validity of representations: the other reason is that this consists
actually aims at proving Theorem 10.11. Indeed, 𝑇ℓ-tilings simulate
the 𝑇ℓ+1-tilings whose tiles contain inductively valid representations
for an additional log𝑁ℓ steps of induction.

In other words, let us actually define
𝑇ℓ = {c ∈ ({0, 1}∗)4 ∶ ∃𝑚 ∈ {0, 1}∗,

∃𝑤 ∈ A⟦𝐿ℓ⟧𝑑 inductively valid with final representation 𝑟,
𝑉 (𝐾, ℓ, c) = ⊤ and 𝜑𝑒(𝐾, ℓ, 𝑟, c) = ⊤}.

Proposition 13.3. For every ℓ ∈ ℕ, 𝑇0 simulates 𝑇ℓ with zoom factor 𝐿ℓ.

Sketch of proof. Reasonning inductively, let us assume that 𝑇0 simulates 𝑇ℓ.
By construction, the tiles of 𝑇ℓ organize themselves into blocks of ⟦𝑁ℓ⟧𝑑

called macro-tiles of level ℓ + 1. Let c be the macro-colors appearing on the
borders of a such a macro-tile of level ℓ + 1 in a 𝑇0 tiling:

• All subarray computation fields in the macro-colors of c are borders of
valid MCMC space-time subarrays by definition of the processor/pro-
cessor wire fields of the 𝑇ℓ-tiles; thus, we have 𝑉 (𝐾, ℓ + 1, c) = ⊤;

• Since 𝑂(𝑀𝑑−1
ℓ+1 ⋅ log(𝐿ℓ+2)) < 𝑁𝑑−1

ℓ , all valid computations of the rec-
ognizing algorithm 𝜑𝑒(𝐾, ℓ + 1,𝑚, c) fit in any such macro-tile;

• Reciprocally, such a macro-tile can only admit macro-colors c that
admit a valid computation of 𝜑𝑒(𝐾, ℓ + 1, 𝑟, c);

On the one hand, the final representation of an inductively valid pattern
of domain ⟦𝐿ℓ+1⟧𝑑 can be embedded into such a macro-tile of level ℓ + 1 by
embedding its intermediate representations in the corresponding macro-
tiles/distributed space-time diagrams. Reciprocally, since such macro-tiles
implement the last log𝑁ℓ steps of checking the inductive validity of a pattern,
and that tiles of 𝑇ℓ contain final representations of inductively valid patterns
of domain ⟦𝐿ℓ⟧𝑑, we deduce150 that macro-tiles of level ℓ + 1 embed final
representations of inductively valid patterns of domain ⟦𝐿ℓ ⋅ 𝑁ℓ⟧𝑑 = ⟦𝐿ℓ+1⟧𝑑.
Thus, we conclude that 𝑇0 simulates 𝑇ℓ+1 with zoom factor 𝐿ℓ+1.

Draft: June 5, 2025 at 14:45.

13.5 Resulting tileset 125

13.5 Resulting tileset

Let 𝑇0 be the tileset resulting from the construction above. We now define
an SFT𝑋 that factors onto𝑋R,I ⊆ Aℤ𝑑 .
Let us define A0 ⊆ A × 𝑇0 as follows: A0 is defined as the set of all

pairs (𝑎, 𝑡) of a symbol 𝑎 ∈ A and a tile 𝑡 ∈ 𝑇0 for which there exists a
representation 𝑟 ∈ R(𝑎) verifying 𝜑𝑒(𝐾, 0, 𝑟, 𝑡) = ⊤. Then, define𝑋 as the
set of all the configurations of Aℤ𝑑

0 whose projection to 𝑇0 form valid 𝑇0-
tilings.
We are left with proving that:

Lemma 13.4. Let us denote 𝜋∶ A0 → A the natural projection fromA0 toA.
Then

𝜋(𝑋) = 𝑋R,I.

We reason by double inclusions.

Part 1: ⊆. Let 𝑥 ∈ 𝑋 be a valid configuration of𝑋, and let 𝑤 ⊑ 𝑥. Without
loss of generality (up to shifting 𝑥 and taking a bigger pattern𝑤), we assume
that dom(𝑤) = ⟦𝑛⟧𝑑 for some 𝑛 ∈ ℕ.
Since 𝑇0 simulates any tileset 𝑇ℓ with zoom factor 𝐿ℓ by the previous

lemma, every 𝑇0-configuration can be inductively decomposed into nested
arrays of macro-tiles of size ⟦𝐿ℓ⟧𝑑. While we cannot ensure that a macro-tile
of level ℓ entirely contains the domain ⟦𝑛⟧𝑑, there exists a hypercube of 2𝑑
macro-tiles of level ℓ that entirely covers the domain ⟦𝑛⟧𝑑. We denote by
𝐷 ⊆ ℤ𝑑 the subset of ℤ𝑑 that is covered by these macro-tiles of level ℓ, and
such that ⟦𝑛⟧𝑑 ⊆ 𝐷.
By definition, we have 𝜋(𝑤) ⊑ 𝜋(𝑥|𝐷); and by construction of the tileset

𝑇0, the pattern 𝜋(𝑥|𝐷) is an inductively valid pattern, since the projection of
𝑥|𝐷 to 𝑇0 forms a hierarchy of nested macro-tiles that all verify the inductive
validity of the patterns they cover. Since 𝑤 was arbitrary, we conclude that
𝜋(𝑥) ∈ 𝑋R,I.

The converse inclusion should be straightforward: given an inductively
valid pattern for (R,I), we want to place a macro-tile on top of it. It is,
however, unecessarily complicated by a small hiccup: in the definition of 𝑇ℓ,
all cluster computation fields are supposed to be fillable with valid subarray
computations.

Part 2: ⊇. Let 𝑥 ∈ 𝑋R,I be a valid configuration, and let 𝑢 ⊑ 𝑥 be an
arbitrary pattern.We enlarge 𝑢 by considering ℓ ∈ ℕ and 𝑢′ ⊑ 𝑥 such that
𝑢 ⊑ 𝑢′ and, up to translation: dom(𝑢) ⊆ 𝑁ℓ

2 + ⟦𝐿ℓ⟧𝑑 and ⟦𝐿ℓ+1⟧𝑑 ⊆ dom(𝑢′).
By definition of𝑋R,I, there exists 𝑣 ⊑ 𝑥 such that 𝑢′ ⊑ 𝑣 and such that 𝑣

is inductively valid. Without loss of generality (up to shifting 𝑥), we assume
that 𝑣 has domain ⟦2𝑛⟧ for some 𝑛 ∈ ℕ.
Parent hypercubes: Since ⟦𝐿ℓ+1⟧𝑑 ⊆ dom(𝑣), and that the pattern 𝑢 fits (up

to translation) in a box of size ⟦𝐿ℓ+1⟧𝑑, we know that by partitionning ⟦2𝑛⟧𝑑

into hypercubes of fundamental domain ⟦𝐿ℓ+1⟧, at most 2𝑑 such hypercubes
are enough to cover 𝑢 in 𝑥′. Let us call these the parent hypercubes.
Children hypercubes: Actually, the pattern 𝑢 fits (up to translation) in a

box of size ⟦𝐿ℓ⟧𝑑. Thus, when partitionning all the parent hypercubes into
hypercubes of fundemantal domain ⟦𝐿ℓ⟧, 2𝑑 such hypercubes are enough to
cover 𝑢 in 𝑥′. Let us call these the children hypercubes.
Children macro-tiles:We can now define 2𝑑 macro-tiles that will strictly

cover the pattern 𝑢. Indeed, since all parent hypercubes cover patterns that
are inductively valid, we define a 𝑇ℓ tiling of the 2𝑑 children hypercubes as
follows:

Draft: June 5, 2025 at 14:45.

126 13 Proof of Theorem 10.11

151 This explains why we go down from
⟦𝐿ℓ+1⟧𝑑 to ⟦2𝐿ℓ⟧𝑑: the only justification
we found to explain why the distributed
computation layers of the 2𝑑 macro-tiles of
level ℓ could be filled by valid subarrays
required to consider the representations
of the parent hypercubes obtained by the
inductive validity of 𝑣.

• Fill the position field of themacro-tiles of level ℓwith the position of the
corresponding children hypercubes in their parent hypercube; and,
recursively, fill the position field of the macro-tiles of level ℓ′ < ℓ;

• Fill the subarray computation and subarray wire fields of the macro-tiles
of level ℓ′ ≤ ℓwith validMCMC space-time subarrays of the induction
function I on the representations obtained by inductive validity of
𝑣;151

• The computation, wire, processor and processor wire fields of macro-tiles
of level ℓ′ < ℓ should be completely determined; at level ℓ, these should
be filled with plausible data (consistent between the 2𝑑 childrenmacro-
tiles).

Thus, we obtain a 𝑇0-valid pattern 𝑤0 over the domain ⟦2𝐿ℓ⟧𝑑.
On the other hand, denote by𝑤 the pattern of domain ⟦2𝐿ℓ⟧𝑑 that is equal,

up to shift, to the pattern of 𝑥 covered by all the children hypercubes. By
construction, (𝑤,𝑤0) is a locally valid pattern in 𝑋; and since 𝑢 ⊑ 𝑤, this
proves that 𝑢 is locally valid in 𝜋(𝑋).

Draft: June 5, 2025 at 14:45.

[Des21] Destombes, “Algorithmic com-
plexity and soficness of shifts in dimen-
sion two”.

Applications of Theorem
10.11 14

In this chapter, we consider several applications of Theorem 10.11
to show how representations and inductions can prove soficity of
subshifts in classical (Theorems 14.1 and 14.2) and novel examples
(Theorem 14.3, …).
These examples also illustrate various intuitions and ideas about

the possibilities of this construction: embedding effective forbidden
pattern computations inside the induction function, “forgetting” data
inside representations once it has been checked by the induction func-
tion…

14.1 Right-computable densities

A huge inspiration for these chapters has been the Ph.D thesis of Juline
Destombes [Des21, Theorem 4 & 5], which proves that any effective sub-
shifts on the alphabet { , } whose patterns contain a sublinear amount
of symbols is actually sofic. We generalize this statement to arbitrary
dimensions 𝑑 ≥ 2:

Figure 14.1: A typical pattern of the subshift𝑋1/2.

Theorem 14.1. Let 𝑑 ≥ 2. For 𝐶 ∈ ℕ and 0 ≤ 𝛼 < 𝑑 − 1, consider the subshit
𝑋𝛼 defined as:

𝑋𝛼 = {𝑥 ∈ { , }ℤ𝑑 ∶ ∀𝑛 ∈ ℕ,∀𝑤 ∈ A⟦𝑛⟧𝑑 , 𝑤 ⊑ 𝑥 ⟹ |𝑤| ≤ 𝐶 ⋅ 𝑛𝛼}.

If𝛼 ∈ Π1, then𝑋𝛼 is a sofic subshift; furthermore, any effective subshift𝑋 ⊆ 𝑋𝛼
is also sofic.

Proof (Soficity of𝑋𝛼). Themain idea of this proof consists in representating
patterns 𝑤 ∈ { , }⟦𝑛⟧𝑑 by the list of all their symbols; and have the
induction forbid representations of densities higher than 𝛼.
Formally, let us fix 𝛼 ∈ Π1 such that 0 ≤ 𝛼 < 𝑑 − 1, and 𝑟 ∈ 𝑄+ such

that 𝛼 < 𝑟 < 𝑑 − 1. For 𝑤 ∈ { , }⟦𝑛⟧𝑑 , the representation functionR will
representat the pattern 𝑤 with a tuple composed of:

• The size 𝑛;
• The list 𝐿 = {𝑖 ∈ ⟦𝑛⟧𝑑 ∶ 𝑥𝑖 = } of all symbols in 𝑤;

Draft: June 5, 2025 at 14:45. 127

128 14 Applications of Theorem 10.11

152 Every pattern in 𝑋R,I must contain
less than 𝐶 ⋅ 𝑛𝛼 symbols , so is valid in
𝑋𝛼. Reciprocally, any valid pattern in𝑋𝛼
of domain ⟦2𝑛⟧𝑑 turns out to be induc-
tively valid by induction.

when the number of symbols in 𝑤 verifies |𝑤| ≤ 𝐶 ⋅ 𝑛𝑟. Otherwise, 𝑤
has no representation and we setR(𝑤) = ∅.
For any 𝑤 ∈ { , }⟦𝑛⟧𝑑 and any 𝑚 ∈ R(𝑤), the bit size of 𝑚 verifies

|𝑚| = 𝑂(𝑛𝑟 ⋅ log𝑛). Furthermore, the induction I follows directly from our
definition ofR: given 2𝑑 lists of positions of symbols and the size 𝑛 of the
domains ⟦𝑛⟧𝑑,

• Merge these 2𝑑 lists together into a larger list 𝐿. Since each list repre-
sents the positions inside its hypercube of fundamental domain ⟦𝑛⟧𝑑,
the coordinates of each symbol first need to be recomputed to know
its position in the domain ⟦2𝑛⟧𝑑.

• If the size of the merged list 𝐿 is larger than 𝐶 ⋅ 𝑛𝑟, reject the com-
putation. Otherwise, compute the rational 𝑟𝛼 ∈ ℚ+ obtained after
approximating 𝛼 ∈ Π1 during 𝑂(𝑛𝑟) steps.

• For each size of square 1 ≤ 𝑘 ≤ log𝑛, check for each position of a
symbol in 𝐿 that the square of fundamental domain ⟦𝑘⟧𝑑 centered
on this position contains less than 𝐶 ⋅ 𝑘𝑟𝛼 symbols .

Using appropriate data structure (sets implemented as balanced trees, etc…),
the function I can actually be implemented in time𝑂(𝑠⋅polylog(𝑠)) on inputs
of size 𝑠: by Theorem 10.11, the subshift 𝑋R,I ⊆ { , }ℤ𝑑 is sofic. Since
the subshifts𝑋R,I and𝑋𝛼 coincide152,𝑋𝛼 is in turn sofic.

To prove that any effective subshift of𝑋𝛼 is sofic, we use a classical trick
that comes up in most examples of the chapter: we embed a small (but
ever growing) enumeration of the forbidden patterns in the induction
function I. However, this method only works when representations embed
enough information to check them for forbidden patterns efficiently:

Proof (general case). Let us now consider any effective subshift 𝑋 ⊆ 𝑋𝛼.
There exists a computably enumerable family F ⊆ { , }∗𝑑 of forbidden
patterns such that𝑋 = 𝑋F. We assume that there exists a RAM program
𝑒 ∈ {0, 1}∗ that enumerates F as a list of multidimensional arrays filled with
and symbols. In particular, in 𝑡 steps of computations, 𝑒 cannot enumerate

patterns of any domain whose cardinality exceeds 𝑡.
We amend the induction function I from the proof above by adding the

following computations:
• After computing log log𝑛 steps of the RAM program 𝑒, collect the
complete patterns that were enumerated. For each of them, compute
an associatd tuple ((𝑛1,… , 𝑛𝑑), 𝑙) where ⟦𝑛1,… , 𝑛𝑑⟧ is the domain of
the pattern and 𝑙 the list of positions in 𝑠 colored with symbols.

• For every position 𝑝 in the merged list 𝐿 (i.e. every position of the
representationed pattern), and for every pattern 𝑤 enumerated at the
previous step, check whether the pattern 𝑤 can occur at the position 𝑝.
If it does, reject; otherwise, continue.

Since any pattern enumerated in the first step is made of less than log log𝑛
cells, checking whether it occurs at some position can be performed in time
poly(log log𝑛) (using suitable data structures for 𝐿). Thus, the induction I
can still be implemented with time complexity 𝑡(𝑠) = 𝑂(𝑠 ⋅ polylog(𝑠)) on
inputs of size 𝑠 and Theorem 10.11 still applies.
By definition, any pattern of domain ⟦2𝑛⟧𝑑 in𝑋 is inductively valid, since

it does not contain any forbidden pattern and will never fail any check
of the induction I. Reciprocally, let 𝑤 ∈ F be a forbidden pattern of 𝑋.
There exists 𝑛 ∈ ℕ such that the RAM program enumerates 𝑤 after 𝑛 steps
of computations; and let us consider any pattern 𝑤′ of domain ⟦2𝑛′⟧𝑑 for
𝑛′ ≥ 2𝑛 such that 𝑤′ ⊑ 𝑤. Then 𝑤′ is not inductively valid (it will fail its
2𝑛-th induction step) and does not appear in𝑋R,I.
We conclude that𝑋 = 𝑋R,I, so that𝑋 is indeed sofic.

Draft: June 5, 2025 at 14:45.

14.2 Seas of squares 129

[Wes17] Westrick, “Seas of squares with
sizes from aΠ0

1 set”.

153𝑋 is a ℤ2 sofic subshift: one can draw
rectangles by orienting the sides and cor-
ners, and rectangles can easily be forced
to be squares by also drawing diagonals of
slope (1, 1).

154 North-West, North-East, South-West
or South-East.

155 i.e. 𝑠 straddles over one of the four cor-
ners of the domain ⟦𝑛⟧2.

156 i.e. the candidate side length of the par-
tial square 𝑠.

14.2 Seas of squares

Anothermotivation for Theorem 10.11 was [Wes17], which also inspired the
writing of its proof. Define the “seas of squares” subshift 𝑋 ⊆ { , }ℤ2

as the configurations made of disjoint squares of symbols floating over a
background of symbols153.

Figure 14.2: A typical configuration of the “seas of squares” subshift𝑋 .

14.2.1 Classical “seas of squares” construction

For 𝑆 ⊆ ℕ, we denote by𝑋 ∶𝑆 the subshift of the “seas of squares” subshift
in which the side lengths of all finite squares belong in 𝑆. In [Wes17], it
was proved that many “seas of squares” subshifts 𝑋 ∶𝑆 are sofic because
each square pattern of size 𝑛 × 𝑛 can be representationed by �̃�(𝑛2/3) bits of
information:

Theorem 14.2 ([Wes17]). For any Π0
1 set 𝑆 ⊆ ℕ, the seas of squares subshift

𝑋 ∶𝑆 is sofic.

For example, the set 𝑃 of prime numbers defines a sofic subshift 𝑋 ∶𝑃,
whose soficity is much less obvious than𝑋 ’s was.
Using Theorem 10.11,we prove Theorem 14.2 by building representations

that store all the side lengths of squares that appear in the given pattern:

Proof. Let 𝑤 ∈ { , }⟦𝑛⟧2 be a pattern. If 𝑤 is not a valid pattern in 𝑋
(i.e. some symbols do not form a square, or a partial square “cut” by the
border of 𝑤), then 𝑤 has no representation. Otherwise, we define a single
representation for 𝑤, which should contain:

• The size 𝑛 ∈ ℕ;
• A length list 𝐿, which contains all the side lengths of squares appearing
(even partially) in 𝑤;

• A corner list 𝐶 containing the position (𝑖, 𝑗) ∈ ⟦𝑛⟧2 and the orienta-
tion154 of a list of square corners;

and the corners of a partial square 𝑠 in 𝑤 should appear in 𝐶 if:
• Either 𝑠 shows a single corner in 𝑤,155 in which case 𝐶 should contain
this single corner;

• Or 𝑠 contains exactly two corners in 𝑤 and the distance between these
corners156 is greater than 𝑛

8 .
It was noticed in [Wes17] that any pattern of domain ⟦𝑛⟧2 can only see
𝑂(𝑛2/3) distinct sizes of (partial) squares simultaneously: indeed, in the
worst case, one of each square of side length 1, 2,…,𝑚 appears in the domain
⟦𝑛⟧, in which case∑𝑚

𝑘=1 𝑘
2 ≤ 𝑂(𝑛2). Since the corner list has length𝑂(1), we

conclude that every representationR(𝑤) is of size at most 𝑂(𝑛2/3 ⋅ log𝑛) on
patterns of domain ⟦𝑛⟧2.

Draft: June 5, 2025 at 14:45.

130 14 Applications of Theorem 10.11

3

7

Figure 14.3: Cases of (horizontally)
matching and non-matching corners.

157 See condition (𝑖𝑖𝑖) in Definition 10.5.

The induction function I follows immediately, but is somewhat tedious
to write: given a size 𝑛 ∈ ℕ and 2 × 2 representations of patterns of domain
⟦𝑛⟧2, we merge the list of side lengths seen in the four representations, and
analyze the corners of partial squares appearing in each of the 2×2 quadrants
to check whether they form valid squares;

• List of side lengths: merge the lists 𝐿1, 𝐿2, 𝐿3, 𝐿4 of length sides of
squares into a single list 𝐿;

• List of corners: merge the list of all partial corners and positions 𝐶1,
𝐶2, 𝐶3, 𝐶4 from the 2 × 2 representations, after renormalizing the
coordinates to the new domain ⟦2𝑛⟧, into a single list 𝐶;

• Merging corners: if, in the list 𝐶 of oriented positioned corners, several
corners define interesecting rectangles, check that these corners actu-
ally match to form a square (reject if this isn’t the case) and register
the associated square length in 𝐿;

• Deleting corners: if four corners match together and form a complete
square, or two corners match and form a square “straddling” over the
border of the domain ⟦2𝑛⟧ of side length less than 2𝑛

8 , delete them
from the representation’s list of corners 𝐶;

• Checking side lengths against 𝑆: since 𝑆 is a Π1 set, let us compute
log log𝑛 steps of a RAM program enumerating 𝑆𝑐. If any enumerated
size 𝑠 ∈ 𝑆𝑐 appears in 𝐿, reject the computation.

Since I has time complexity 𝑂(𝑠 ⋅ log 𝑠) on inputs of size 𝑠, we conclude
that𝑋R,I is a sofic ℤ2 subshift. We are left with convincing ourselves that
𝑋R,I is indeed𝑋 ,𝑆:

• If 𝑤 is a pattern of domain ⟦2𝑛⟧2 of𝑋 ,𝑆, then it is inductively valid.
• Reciprocally, let 𝑤 be an inductively valid pattern of domain ⟦2𝑛⟧2:

– By definition of I, the square sizes appearing in 𝑤 cannot be enu-
merated in the log𝑛 first steps of the program enumerating 𝑆𝑐;

– The symbols in 𝑤must form valid squares. Indeed, let us as-
sume the opposite and consider any four mismatching corners.
Let us denote by ≃ 2𝑘

8 one of the “candidate side length” of these
corners. The key observation is that, even though these corners
are forgotten after the 𝑘th induction step, there exists 2 × 2 ad-
jacent squares of the partition (𝐶𝑘−2,𝑖)𝑖∈⟦2𝑛−𝑘⟧2 that fully cover
these mismatching corners. By definition of recurrent validity,
an induction step of level 𝑘−1 is performed on these 2×2 squares
and the mismatch is discovered.

Taking the limit over 𝑛, we conclude that𝑋R,I = 𝑋 ,𝑆.

The previous proof is an illustration of anothermethod on representations:
to keep representations from growing too large, it is possible to discard
some data once it has been checked by the inductive validity condition157.

14.2.2 Improved “seas of squares”

With Theorem 10.11, we can actually improve the “seas of squares” con-
struction: since representations are of size 𝑂(𝑛2/3 ⋅ log𝑛) on patterns of
domain ⟦𝑛⟧2, which is much less than our 𝑜(𝑛) limit, there is plenty of room
for squares to contain more data. As an example, we embed in the squares
independant configurations of the Toeplitz densities lesser than some real
number 𝛼 (see Definition 5.7 for definitions).
More precisely, for𝛼 ∈ [0, 1], let𝑋 ∶T(≤𝛼) denote the “seas of squares” sub-

shift on the alphabet { , 0, 1}ℤ2 , whose configurations are made of squares
of symbols {0, 1} over a background; and each square contains the periodic
lift of a valid pattern 𝑤 ∈ L(T(≤ 𝛼)).

Draft: June 5, 2025 at 14:45.

14.3 Lifts 131

158 See Example 10.8 for more details.

159 Since binary expansions are guessed,
we actually store the maximal guess.

[DRS10] Durand, Romashchenko, and
Shen, “Effective closed subshifts in 1D can
be implemented in 2D”.

Theorem 14.3. Let 𝛼 ∈ Π1 ∩ [0, 1]. The subshift𝑋 ∶T(≤𝛼) is sofic.

Sketch of proof. Wemix the representation functions defined inExample 10.8
on Toeplitz subshifts, and in Theorem 14.2 above for the “seas of squares”
subshifts:

• Store the size 𝑛 ∈ ℕ such that the given pattern has domain ⟦𝑛⟧2;
• For squares “straddling” over the border of the domain ⟦𝑛⟧ and whose
side lengths are larger than 𝑛

8 , store a guess of the Toeplitz structure
and of the sequence being Toeplitzified;158

• Since each square contains the Toeplitzification of the binary expan-
sion of some real number𝛽 ∈ [0, 1], store themaximal binary expansion
that appears in the pattern.159

The induction I should build a representation from 2×2 subrepresentations
(reconstructing the Toeplitz structure of patterns shared between adjacent
subrepresentations, etc…) and build an upper approximation of𝛼 by comput-
ing log log𝑛 steps of a right-approximating program. If the maximal binary
expansion of the representation ever surpasses this approximation, the rep-
resentation is rejected. Since representations are very non-deterministic
because of the “guessing” involved when studying the structure of a Toeplitz
word, some representations of valid patterns will be rejected; yet, this does
not prevent valid patterns from appearing, since the “correct” guess of a
valid pattern is the minimal possible binary expansion, which will not be
forbidden.
Since representations are of size 𝑂(log𝑛) and the induction has time

complexity 𝑂(𝑠 ⋅ polylog(𝑠)), the subshift𝑋 ∶T(≤𝛼) is indeed sofic.

Remark. By adding the side lengths of the squares to the representation,we obtain
representations of size 𝑂(𝑛2/3 log𝑛) that allow to even constrain the squares of
symbols {0, 1} to have side lengths belonging in any Π1 set.

All the ideas related to the “seas of squares” Toeplitz subshifts appear in
our proof of Theorem 9.28,which contains themost involved representation
function of this thesis.

14.3 Lifts

14.3.1 Periodic lifts

Another famous application of the expanding tileset construction was the
proof of Proposition 3.44 in [DRS10]: for any effective subshift𝑋 ⊆ Aℤ𝑑−1 ,
the subshift𝑋⇑ ⊆ Aℤ𝑑 is sofic.
A naive representation for patterns of domain ⟦𝑛⟧𝑑 inAℤ𝑑−1⇑ consists in

storing the pattern of a (𝑑 − 1)-dimensional facet, which results of repre-
sentations of bit length 𝑂(𝑛𝑑−1). This makes this example very interesting,
since it appears precisely in the gap between the naive 𝑂(𝑛𝑑−1) information
bound and our 𝑜(𝑛𝑑−1) sufficient condition (Theorem 10.11) for soficity.
Yet, we prove here that we can recover Proposition 3.44 with Theorem 10.11
by distributing the 𝑂(𝑛𝑑−1) bits of the representation along the direction of
periodicity given by the lift.

A new proof of Proposition 3.44. (Proving Proposition 3.44 on ℤ2 makes the
proof easier to understand, but the methods actually generalize to arbitrary
dimensions 𝑑 ≥ 2 without issues.)
For 𝑤 a pattern ofAℤ⇑ of domain ⟦𝑛⟧2, the key idea of the proof consists

in “distributing” the word 𝑤|{0}×⟦𝑛⟧: representations should, geometrically,
organize themselves in columns of 𝑛 representations, each representation
containing a chunk of size 𝑂(log𝑛) of 𝑤|{0}×⟦𝑛⟧.

Draft: June 5, 2025 at 14:45.

132 14 Applications of Theorem 10.11

ℎ = 4

ℎ = 5

ℎ = 6

ℎ = 7

Figure 14.4: A column of square pat-
terns (𝑛 = 16), an attribution of heights
ℎ, and the associated areas covered by the
substrings 𝑠).

NW NE SW SE

NW NE SW SE

NW NE SW SE

Figure 14.5: Scheme of a meta-
representation of depth 𝑑 = 3.

Distributed pattern representations More precisely, the representation
of a pattern𝑤 inAℤ⇑ of domain ⟦𝑛⟧2 is a tuple (𝑛, ℎ, 𝑠) ∈ {𝑛}×⟦𝑛⟧×A𝑂(log𝑛)

(whose elements are called the size, the height, and the substring of the
representation) such that the substring 𝑠 should contain𝑂(log𝑛) symbols of
𝑤 around the horizontal position ℎ ∈ ⟦𝑛⟧, i.e. 𝑠 = 𝑤|{0}×(ℎ+[−𝑂(log𝑛)..𝑂(log𝑛)]).
The induction should then enforce that representations are geometrically

organized into consecutive heights (modulo 𝑛), so that 𝑛 vertically consec-
utive representations of patterns 𝑤 of size ⟦𝑛⟧2 will collectively hold the
complete description of 𝑤.

Meta-representations Unfortunately, distributing the completed infor-
mation into pieces makes the induction difficult to compute, since the 2 × 2
subrepresentations involved in a given induction step do not necessarily pos-
sess the data required to compute/check the representation of their parent.
To solve this issue, we will actually use meta-representations, whose role is

to encode log𝑛 levels of representations at once: the meta representation
of a pattern of domain ⟦𝑛⟧2 should encode a representation of said pattern,
and guesses of representations for its parents, grand-parents,… for log𝑛
levels of inductions.

Remark. Why log𝑛, specifically? Because after log𝑛 induction steps, the con-
sidered patterns have size at least 𝑂(𝑛2), so that they geometrically cover at least
𝑛 blocks of size ⟦𝑛⟧2 vertically, and thus covers all the “heights” of the subpatterns
of size 𝑛.

To encode 𝑑 levels of inductions at once, we claim that the correct data
structure on ℤ2 is a 4-ary comb tree of depth 𝑑. Indeed, let us consider an
intermediate representation 𝑟𝑘i from Definition 10.5. It is used to compute
four inductions steps: one (condition (𝑖𝑖)) computes the representation 𝑟𝑘+1

i/2
(which will itself be used to computer higher-level induction steps: this
is the branch of the comb tree), and the other three (condition (𝑖𝑖𝑖)) are
induction steps whose results are never used again (hence, three leaves).
Thus,we definemeta representations,which encode log𝑛 steps of induction

as a 4-ary comb tree of depth log𝑛 with 1 + 4 log𝑛 nodes:
• Each non-leaf node has four children: aNorth-West, aNorth-East, a
South-West and a South-East child; three of them are leafs, and one is
another 4-ary comb tree;

• Nodes at depth 𝑘 ≤ log𝑛 each carry the representation of a pattern of
size ⟦2𝑘 ⋅ 𝑛⟧2 as defined in the previous paragraph.

Intuitively, if a node has representation 𝑟, the representation of its North-
West (resp. …) child is the representation of the parent computed by giving
𝑟 to the induction I as its North-West argument. We denote byR this meta-
representation function.

Meta-induction The meta-induction I should then check that all the
2 × 2 given meta-representations agree on their guesses of higher levels,
and guess the next few levels of representations that should be added to
the 4-ary comb tree of the meta-representation. More precisely, given four
meta-representations, i.e. four 4-ary comb trees 𝑇NW, 𝑇SW, 𝑇NE and 𝑇SE, the
meta-induction proceeds as follows:
1. Consider the pattern representations (𝑛NW, ℎNW, 𝑠NW) (resp. …) con-
tained in the root of each tree 𝑇NW, 𝑇SW, 𝑇NE and 𝑇SE.
a) These representations should correspond to patterns of the same
size, so that 𝑛NW, 𝑛SW, 𝑛NE and 𝑛SE should be equal.

b) These representations should have a correct geometrical arrange-
ment: east and west heights should be equal, i.e. ℎNW = ℎNE and
ℎSW = ℎSE; and heights on each “column” should be vertically
increasing, i.e. ℎNW = ℎSW + 1 mod 𝑛 and ℎNE = ℎSE + 1 mod 𝑛.

Draft: June 5, 2025 at 14:45.

14.3 Lifts 133

2. The four input meta-representations should agree on their guesses
of higher levels: considering the North-West subtree of the represen-
tation 𝑇NW, the North-East subtree of the representation 𝑇NE, etc…
check that they are all equal. If they are not, reject the computation.
Otherwise, denote 𝑇 ′ this unique subtree.

3. If 𝑇 ′ is a single leaf node, accept the computation and return it as a
meta-representation.

4. Otherwise,𝑇 ′ a 4-ary comb tree of depth log𝑛−1 that encodes log𝑛−1
levels of successive inductions. Since themeta-induction should return
a meta-representation of a pattern of domain ⟦2𝑛⟧2, we need to non-
deterministically guess 2 additional levels to 𝑇 ′ to obtain a binary comb
tree of depth log𝑛 + 1.
We non-deterministically guess these two additional levels to 𝑇 ′ to
obtain a new 4-ary comb tree 𝑇, and fill the associated nodes of level
𝑘 ∈ {log𝑛, log𝑛 + 1} with representations as follows:
a) The size of these nodes should be 2𝑘 ⋅ 𝑛;
b) The height should be some non-deterministic ℎ ∈ ⟦2𝑘 ⋅ 𝑛⟧.
c) The substring 𝑠 ∈ A𝑂(𝑘+log𝑛) should be non-deterministically
filled, but 𝑠 should agree with the substrings 𝑠NW (resp. 𝑠SW, …)
on their respective intersections.
Denoting 𝐼NW = ℎNW−[𝑂(log𝑛) .. 𝑂(log𝑛)] ⊆ ⟦𝑛⟧ (resp. 𝐼SW…)
the intervals covered by the substring 𝑠NW (resp. …), one can
compute the positions these intervals would have in the succes-
sive representations of the tree 𝑇 by going down the trees 𝑇NW
(resp. …) recursively. Indeed, starting from the root, an interval
is left unchanged at depth 𝑘′ if we go down a West subtree; or
shifted by 2𝑘′−1 ⋅ 𝑛 if going down an East subtree. Applying this
process, denote by 𝐼′NW ⊆ ⟦2𝑘 ⋅ 𝑛⟧ (resp. …) the position that the
interval 𝐼NW occupies in the current depth-𝑘 node.
Denote by𝐷 = ℎ + [−𝑂(𝑘 + log𝑛) .. 𝑂(𝑘 + log𝑛)] ⊆ ⟦2𝑘 ⋅ 𝑛⟧ the
interval covered by the non-deterministically guessed substring
𝑠 ∈ A𝑂(𝑘+log𝑛). Considering the intersection of𝐷 and 𝐼′NW, 𝐼′SW,
𝐼′NE and 𝐼′SE, then 𝑠 should agree with the corresponding bits of
𝑠NW (resp. 𝑠SW, …) if their intersections are non-empty.

Finally, return the new tree 𝑇 as a valid meta-representation.

Sketch of proof We then claim that the induction defines valid represen-
tations, which in turn implies that𝑋R,I = Aℤ⇑. Indeed:

• By inductive validity, the representations indeed geometrically orga-
nize themselves as needed (step 1. of I).

• For every pattern 𝑤, there always exists an inductively valid meta-
representation (the notion of inductive validity, which computes rep-
resentations inductively from subrepresentations, and only checks one
step of induction from any 2 × 2 square, creates a recursion tree that
looks like a 4-ary comb tree);

• Most importantly, by guessing log𝑛 steps of recursion in advance, all 𝑛
distributed representations in a columnhave to guess the same represen-
tation simultaneously. Thus, the bits of the substrings of depth≥ log𝑛
are each checked individually by these 𝑛 distributed representations,
ensuring the correctness of representations of depth ≥ log𝑛.

To go from Aℤ⇑ to 𝑋⇑ for some ℤ effective subshift 𝑋, we modify the
induction to compute some log log𝑛 steps of an enumeration of the forbidden
patterns of𝑋, and check whether they appear in the substrings 𝑠NW, 𝑠NE, …
Since representations for patterns of domain ⟦𝑛⟧2 have bit length 𝑂(log2 𝑛)
and that I is computable in time 𝑡(𝑠) = 𝑂(𝑠), we conclude that 𝑋⇑ is a ℤ2

sofic subshift.
Draft: June 5, 2025 at 14:45.

134 14 Applications of Theorem 10.11

160 This subshift was defined in the proof
of Theorem 9.2.

161 As defined in Section 5.1, the set of
configurations𝑋T ⊆ �̂�ℤ is the ℤ closure
of the ruler sequence.

𝑧0∗ ∗ ∗ ∗

𝑧0∗ ∗ ∗ ∗

𝑧0∗ ∗ ∗ ∗

𝑧0∗ ∗ ∗ ∗

𝑧0∗ ∗ ∗ ∗

𝑧0∗ ∗ ∗ ∗

𝑧0∗ ∗ ∗ ∗

𝑧1∗ ∗ ∗ ∗ ∗

𝑧1∗ ∗ ∗ ∗ ∗

𝑧1∗ ∗ ∗ ∗ ∗

𝑧2

𝑧2

∗ 𝑧3

Figure 14.6: Structure of a configuration
of a Toeplitz lift.

14.3.2 Sparse lifts

A difficult question about multidimensional sofic subshifts is whether peri-
odicity is truly needed in the previous construction: in Question 15.10, we
ask whether having a sofic free lift implies that the original subshift is sofic.
Or, equivalently: does there exist an effective non-sofic subshift whose free
lift is sofic?
In the whole section, we consider the example of the all-period subshift

𝑋∗ ⊆ { , ∗}ℤ whose configurations containing at least two symbols ∗ at
distance, say, 𝑛 ∈ ℕ, are actually 𝑛-periodic160.
The patterns of this subshift admit a very simple representation: if a valid

pattern 𝑤 of domain ⟦𝑛⟧ contains at least two symbols ∗, we associate the
representation containing:

• The domain size 𝑛 ∈ ℕ;
• A period 𝑝 ∈ ⟦𝑛⟧, which is the shortest distance between two ∗ symbols
in 𝑤;

• A shift 𝜎 ∈ ⟦𝑛⟧, which is the smallest index of a ∗ symbol in 𝑤;
if𝑤 contains a single symbol ∗, thenwe associate a representation containing
the associated domain size and shift; and if 𝑤 contains no symbol ∗, we asso-
ciate the empty representation 𝜀. If 𝑤 is not a valid pattern in𝑋∗, we define
no representation for it. All representations are of size at most 𝑂(log𝑛).
The associated induction checks the compatibility of two representations:
• If at least one representation contains a period, check that it is com-
patible with the data available on the other representation. The new
shift is the left shift, and the period is left unchanged;

• If the two representations only contain a shift each, compute the asso-
ciated period (as the distance between the two shifts);

• If one representation is blank, return the shift of the other representa-
tion;

• If both representations are blank, return a blank representation.
We now consider two non-periodic lifts of 𝑋∗: the Toeplitz lift, and the

𝛼-sparse lift.

Toeplitz lift

Define the Toeplitz lift of𝑋∗ as161:

𝑋↑T
∗ = {𝑥 ∈ { , ∗}ℤ2 ∶ ∃(𝑧𝑛)𝑛∈�̂� ∈ (𝑋∗)�̂�, ∃𝑡 ∈ 𝑋T, ∀𝑖 ∈ ℤ, 𝑥|{𝑖}×ℤ = 𝑧𝑡𝑖}

Intuitively, configurations of 𝑋↑T
∗ are obtained as a vertical Toeplitz of

several (in fact, infinitely many) configurations of 𝑋∗. Since a pattern of
domain ⟦𝑛⟧2 will only see 𝑂(log𝑛) distinct patterns of𝑋∗, and that𝑋∗ itself
has representations of bit size 𝑂(log𝑛), one should not be surprised that:

Example 14.4. The ℤ2 subshift𝑋↑T
∗ is sofic.

Sketch of proof. Define the representationR on patterns of domain ⟦𝑛⟧2 as
a tuple containing the following information:

• The domain size 𝑛 ∈ ℕ;
• A guess of the vertical Toeplitz structure;
• For each of the log𝑛 known levels of vertical Toeplitz in 𝑤 and the
𝑂(1) lines of unknown levels, a representation of the corresponding
pattern of domain ⟦𝑛⟧ in𝑋∗;

Draft: June 5, 2025 at 14:45.

14.3 Lifts 135

162 The proof of non-soficity actually fol-
lows the argument used on the mirror sub-
shift: see Proposition 7.1.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

𝑥4

𝑥3

𝑥2

𝑥1

Figure 14.7: Layout of a “stripe lift” con-
figuration.

An associated induction I should:
• Check the compability of the vertical Toeplitz structures between the
four subrepresentations;

• On each level of the Toeplitz structure, merge the two representations
of ⟦𝑛⟧ patterns using the induction of the𝑋∗-representation.

A lot of details about the representation function of a Toeplitz structure
has been swept under the rug: for precisions, we refer to Example 10.8. In
any case, representations of ⟦𝑛⟧2 patterns are of size 𝑂(log2 𝑛), and I can
be implemented with time complexity 𝑡(𝑠) = 𝑂(𝑠): thus, 𝑋↑T

∗ is sofic by
Theorem 10.11.

What kind of subshifts have sofic Toeplitz lifts? Unfortunately, the full
shiftAℤ can be proven to have a non-sofic Toeplitz lift162, as do allℤ subshifts
of positive entropy.
As for our construction, it can only be applied under some very heavy

restrictions: since the vertical Toeplitz structure enforces equality of lines
that are arbitrarily far from one another, and that our proof can only rely
on the representations of the ℤ subshift to maintain this constraint, the ℤ
representations need to entirely determine the ℤ patterns.We provided such
representations in the case of the subshift𝑋∗, or for the Toeplitz subshifts
𝑋T(𝑈); in the case of the “seas of squares” subshift, whose representations
do not remember the exact positions of all the squares inside a given pattern,
this requirement is not met.

𝛼-sparse lift

For 𝛼 ∈ [0, 1) ∩ ℚ+, define the 𝛼-sparse lift of𝑋∗ as:

𝑋↑𝛼
∗ = {𝑥 ∈ { , ∗}ℤ2 ∶ ∀𝑖 ∈ ℤ, 𝑥|{𝑖}×ℤ ∈ 𝑋∗ and ∃𝐼 ⊆ ℤ

𝐼 has density 𝑂(𝑛𝛼) and ∀𝑖 ∈ ℤ, 𝑥|{𝑖}×ℤ ≠ ℤ ⟺ 𝑖 ∈ 𝐼};

where a set 𝐼 ⊆ ℤ is said to have density𝑂(𝑛𝛼) if there exists a constant𝐶 ∈ ℝ
such that, for every interval 𝐽 ⊆ ℤ of diameter 𝑛 ∈ ℕ, we have |𝐼 ∩𝐽| ≤ 𝐶 ⋅𝑛𝛼.
In other words, 𝑋↑𝛼

∗ is a free lift of 𝑋∗ in which the density of non-blank
lines is bounded by 𝑂(𝑛𝛼).
Since a pattern of domain ⟦𝑛⟧2 will only see 𝑂(𝑛𝛼) distinct patterns of𝑋∗,

and that𝑋∗ has representations of size𝑂(log𝑛), one should not be surprised
that:

Example 14.5. The ℤ2 𝛼-sparse lift𝑋↑𝛼
∗ is sofic.

Sketch of proof. Define the representationR on patterns of domain ⟦𝑛⟧2 as
follows:

• The domain size 𝑛 ∈ ℕ;
• A list of non-trivial lines and the 𝑋∗-representation of each of these
non-trivial lines.

If a pattern of domain ⟦𝑛⟧2 has more than 𝑂(𝑛𝛼) non-trivial lines, thenR
does not define a representation for it.
An associated induction should merge the lists of non-trivial lines, and

perform the induction on the𝑋∗-representations of the two adjacent sub-
representations of each non-trivial line. Since the representations have size
𝑂(𝑛𝛼 ⋅ log𝑛) and that the induction can be computed in time 𝑡(𝑠) = 𝑂(𝑠),
this proves that𝑋↑𝛼

∗ is sofic.

Draft: June 5, 2025 at 14:45.

136 14 Applications of Theorem 10.11

What about other lifts? Many variations of this 𝛼-sparse lift could be
defined and proved sofic using this method. For example, for a given sub-
shift 𝑋, one could consider a subshift whose configurations are made of
independant stripes from the periodic lift𝑋⇑. If the density of stripes in a
configuration is 𝑂(𝑛𝛼) for 𝛼 < 1, then the resulting “𝛼-stripe lift” is sofic.
The distinction between the Toeplitz lift and such stripe lifts is that the

Toeplitz lift needs to ensure equality between lines that are arbitrarily far
from one another, which forces to pack a lot of information into the ℤ
representations; whereas the stripe lifts forces equality between some stripes
of consecutive lines, which is easy to enforce sofically.

Draft: June 5, 2025 at 14:45.

163 We will, for example, say in Exam-
ple 15.4 that “Alices sends her input to
Bob”.

[KN97] Kushilevitz and Nisan, Communi-
cation complexity.

Perspectives: soficity and
communication complexity 15
We provide some perspective to Theorem 10.11 and the soficity of

multidimensional subshifts in general. In particular, we argue that
these problems naturally fit within the context of ressource-bounded
(non-deterministic) communication complexity.
For example, Lemma 15.9 rephrases the characterization of ℤ sofic

subshifts (Proposition 6.5) in terms of communication complexity.
For illustrative purposes, we also build various ℤ2 subshifts based
on problems with communication complexity 𝑂(𝑛) and study their
soficity.

15.1 Communication complexity

15.1.1 Definitions

Let 𝐴 and 𝐵 be two sets, and 𝑅 ⊆ 𝐴 × 𝐵 a relation. In traditional com-
munication complexity, a pair of elements (𝑎, 𝑏) ∈ 𝐴 × 𝐵 is given to Alice
and Bob: Alice receives the element 𝑎 ∈ 𝐴, and Bob the element 𝑏 ∈ 𝐵.
Intuitively, the communication complexity of the relation 𝑅 is the mini-
mal amount of information that Alice and Bob need to exchange to decide
whether (𝑎, 𝑏) ∈ 𝑅.
More precisely, protocols formalize the idea of exchanging messages:

Definition 15.1. A non-deterministic protocol for 𝑅 is a tuple (𝑇 ,𝑅𝐴, 𝑅𝐵)
for 𝑇 a finite set, and 𝑅𝐴 ⊆ 𝐴× 𝑇,𝑅𝐵 ⊆ 𝐵 × 𝑇 two relations such that:

(𝑎, 𝑏) ∈ 𝑅 ⟺ ∃𝑡 ∈ 𝑇 , (𝑎, 𝑡) ∈ 𝑅𝐴 and (𝑏, 𝑡) ∈ 𝑅𝐵.

In this definition, 𝑇 is the set of possible transcripts, i.e. (intuitively) the
possible communications between Alice and Bob while they verify whether
a given pair (𝑎, 𝑏) verifies (𝑎, 𝑏) ∈ 𝑅. In the following examples, we will
very often interpret protocols as communication protocols, which Alice and
Bob follow to exchange messages163 (i.e. bits) and determine the validity of
their input pair. An element 𝑡 ∈ 𝑇 is then considered as the summary of the
non-deterministic messages they exchanged.
Computationally, the relations𝑅𝐴 and𝑅𝐵 in a protocol can be arbitrary; in

other words, Alice and Bob are given unlimited computational power. Thus,
up to numbering the elements of 𝑇, the amount of information exchanged
by Alice and Bob in a session of the protocol is log |𝑇 |:

Definition 15.2. The size of a protocol (𝑇 ,𝑅𝐴, 𝑅𝐵) is log |𝑇 |.

Going back to relations 𝑅 ⊆ 𝐴×𝐵, we can then define the complexity of
the communication problem 𝑅:

Definition 15.3. Given a relation 𝑅 ⊆ 𝐴×𝐵, its non-deterministic commu-
nication complexityN(𝑅) is the minimal size of protocols for 𝑅.

We refer the reader to [KN97] for a more exhaustive overview of commu-
nication complexity and its applications.

Draft: June 5, 2025 at 14:45. 137

138 15 Perspectives: soficity and communication complexity

164 This argument is often called the fool-
ing pair argument.

165 𝑃 ′ is a determinization of the protocol
𝑃.

15.1.2 Examples

Example 15.4. Consider the problem EQ𝑛 of string equality: Alice and Bob are
respectively given binary words 𝑎 ∈ {0, 1}𝑛 and 𝑏 ∈ {0, 1}𝑛, and want to check
whether their inputs are equal. Formally,

EQ𝑛 = {(𝑎, 𝑏) ∈ ({0, 1}𝑛)2 ∶ 𝑎 = 𝑏}.

ThenN(EQ𝑛) = 𝑛.

Proof. On the one hand, we haveN(EQ𝑛) ≤ 𝑛. Indeed, we make Alice send
its whole input 𝑎 ∈ {0, 1}𝑛 to Bob, and Bob accepts if the message received
matches its own string 𝑏 ∈ {0, 1}𝑛.
On the other hand, assume by contradiction thatN(EQ𝑛) ≤ 𝑛 − 1. Then

EQ𝑛 admits a protocol with less than 2𝑛−1 possible transcripts, so that two
distinct valid pairs (𝑎, 𝑏) ∈ EQ𝑛 and (𝑎′, 𝑏′) ∈ EQ𝑛 must share a common
transcript164. This is a contradiction: indeed, (𝑎, 𝑏′) and (𝑏′, 𝑎) should also
be valid for EQ𝑛, despite having 𝑎 ≠ 𝑏′ and 𝑎′ ≠ 𝑏.

As is often the case with non-deterministic computations, the complexity
of a problem and its negation do not always match:

Example 15.5. Consider the problem NE𝑛 of string difference: Alice and Bob
are respectively given binary words 𝑎 ∈ {0, 1}𝑛 and 𝑏 ∈ {0, 1}𝑛, and want to
check whether their inputs differ. Formally:

NE𝑛 = {(𝑎, 𝑏) ∈ ({0, 1}𝑛)2 ∶ 𝑎 ≠ 𝑏}.

ThenN(NE𝑛) = log𝑛 + 𝑂(1).

Proof. On the one hand, we have N(NE𝑛) ≤ log𝑛 + 1. Indeed, Alice non-
deterministically guesses an index 𝑖 ∈ ⟦𝑛⟧, and sends 𝑖 to Bob along with the
𝑖th bit 𝑎𝑖 of its input; and Bob accepts only if its own bit 𝑏𝑖 differs from 𝑎𝑖.
This defines a valid protocol for NE𝑛: indeed, for every pair (𝑎, 𝑏) ∈ ({0, 1}𝑛)2,
𝑎 ≠ 𝑏 if and only if there exists 𝑖 ∈ ⟦𝑛⟧ such that 𝑎𝑖 ≠ 𝑏𝑖.
On the other hand, let 𝑃 = (𝑇 ,𝑅𝐴, 𝑅𝐵) be an arbitrary protocol for NE𝑛,

and let us consider the following protocol 𝑃 ′ = (𝑇 ′, 𝑅′
𝐴, 𝑅′

𝐵):
• 𝑇 ′ = 2𝑇;
• The pair (𝑎, 𝑡′) is accepted by Alice if 𝑡′ ⊆ {𝑡 ∈ 𝑇∶ (𝑎, 𝑡) ∉ 𝑅𝐴};
• The pair (𝑏, 𝑡′) is accepted by Bob if 𝑡′𝑐 ⊆ {𝑡 ∈ 𝑇∶ (𝑏, 𝑡) ∉ 𝑅𝐵}.

Then 𝑃 ′ is a protocol for EQ𝑛, since (𝑎, 𝑏) ∉ NE𝑛 if and only if there exists
a partition of 𝑇 = 𝑇𝐴 ⊔ 𝑇𝐵 such that 𝑅𝐴 rejects all (𝑎, 𝑡) for 𝑡 ∈ 𝑇𝐴 and 𝑅𝐵
rejects all (𝑏, 𝑡) for 𝑡 ∈ 𝑇𝐵.165 By the previous example, we have |𝑇 ′| ≥ 2𝑛;
but since |𝑇 ′| = 2|𝑇 |, we deduce that |𝑇 | ≥ 𝑛. Thus,N(NE𝑛) ≥ log𝑛.

The method in the proof above generalizes to arbitrary communication
problems, and shows that the communication complexities of a problem and
its negation can differ by at most an exponential factor.

15.1.3 Direct sums

Direct sums are parallel instances of two communication problem 𝑅, 𝑅′:
Alice and Bob are respectively given two words (𝑎, 𝑎′) ∈ 𝐴2 and (𝑏, 𝑏′) ∈ 𝐵2,
and want to verify whether (𝑎, 𝑏) ∈ 𝑅 and (𝑎′, 𝑏′) ∈ 𝑅′ hold simultaneously.

Definition 15.6. Let 𝑅 ⊆ 𝐴 × 𝐵 and 𝑅′ ⊆ 𝐴 × 𝐵 be two communication
problems. Their direct sum 𝑅 ∧ 𝑅′ is the logical conjuction of 𝑅 and 𝑅′:

𝑅 ∧ 𝑅′ = {((𝑎, 𝑎′), (𝑏, 𝑏′)) ∈ 𝐴2 ×𝐵2 ∶ (𝑎, 𝑏) ∈ 𝑅 and (𝑎′, 𝑏′) ∈ 𝑅′}.

Draft: June 5, 2025 at 14:45.

15.2 Communication complexity in ℤ subshifts 139

166 Indeed, if 𝐿 is regular, Alice just sends
to Bob the state it ended up in after read-
ing𝑎 in aDeterministic FiniteAutomaton.
Reciprocally, if CC𝑛,𝐿 = 𝑂(1), then 𝐿 ad-
mits finitely many residuals, and is thus
regular.
167 Recall the definition of follower sets
𝐹𝑋(𝑤) = {𝑦 ∈ Aℕ ∶ ∃𝑥 ∈ A−ℕ, 𝑥𝑤𝑦 ∈ 𝑋}.

Direct sums generalize to arbitrary sums ∧𝑘
𝑖=1𝑅𝑘 of 𝑘 communication

problems 𝑅1,… ,𝑅𝑘. They come up with the very natural question: is there
any advantage in solving 𝑘 parallel instances of a problem simultaneously
rather than sequentially? This is answered in the following proposition:

[KN97] Kushilevitz and Nisan, Communi-
cation complexity.Proposition 15.7 ([KN97, Corollary 4.9]). For any 𝑘 ∈ ℕ and any relation

𝑅 ⊆ 𝐴×𝐵, the communication complexity of 𝑘 parallel instances of 𝑅 verifies:

N(∧𝑘
𝑖=1𝑅) ≥ 𝑘 ⋅ (N(𝑅) − log𝑛 − 𝑂(1)).

In other words, gains are negligeable on problems of large complexity
(i.e. Ω(log𝑛)). However, the logarithmic substractive factor in the previous
proposition is important, as illustrated by the following example:

Example 15.8. Consider the problem ∧𝑛
𝑖=1NE𝑛 of 𝑛 parallel instances of the

string difference problem: Alice and Bob each hold 𝑛 binary strings (𝑎(𝑘))1≤𝑘≤𝑛 ∈
({0, 1}𝑛)𝑛 and (𝑏(𝑘))1≤𝑘≤𝑛 ∈ ({0, 1}𝑛)𝑛, and want to check whether each pair of
words 𝑎(𝑘) and 𝑏(𝑘) are distinct for 1 ≤ 𝑘 ≤ 𝑛. Formally,

∧𝑛
𝑖=1NE𝑛 = {((𝑎(𝑘), 𝑏(𝑘)))1≤𝑘≤𝑛 ∈ (({0, 1}𝑛)2)𝑛 ∶ ∀1 ≤ 𝑘 ≤ 𝑛, 𝑎(𝑘) ≠ 𝑏(𝑘)}.

ThenN(∧𝑛
𝑖=1NE𝑛) = Θ(𝑛).

Sketch of proof. By the previous proposition, we haveN(∧𝑛
𝑖=1NE𝑛) = Ω(𝑛).

The other direction is often proved by exhibiting a protocol of size 𝑂(𝑛)
for ∧𝑛

𝑖=1NE𝑛 in a public coin representation of randomized communication
complexity, and then use derandomization. Introducing these methods is
beyond the scope of this thesis; however, we prove an equivalent result on
the similar problem N1𝑛 in Proposition 15.12.

15.2 Communication complexity in ℤ subshifts

Going back to languages of finite words𝐿 ⊆ A∗, it is well-known that regular
languages can be characterized in terms of communication complexity. In-
deed, let CC𝑛,𝐿 denote the communication problem in which Alice and Bob
are respectively given finite words 𝑢 ∈ A∗ and 𝑣 ∈ A∗ such that |𝑢| + |𝑣| = 𝑛,
and should determine whether the concatenation 𝑢𝑣 is a valid word of the
language 𝐿. Formally:

CC𝑛,𝐿 = {(𝑢, 𝑣) ∈
𝑛
⋃
𝑘=0

A𝑘 ×A𝑛−𝑘 ∶ 𝑢𝑣 ∈ 𝐿}.

By Myhill-Nerode’s theorem, a language 𝐿 ⊆ A∗ verifies CC𝑛,𝐿 = 𝑂(1) if
and only if 𝐿 is regular.166

Asmentioned in Proposition 6.5,Myhill-Nerode’s theorem generalizes to
ℤ subshifts: and a given ℤ subshift𝑋 is sofic if and only if {𝐹𝑋(𝑤)∶ 𝑤 ∈ A∗}
is finite167. We prove here that this result can also be rephrased in terms of
communication complexity.
For 𝑋 a subshift and 𝑛 ∈ ℕ, consider the problem CC𝑛,𝑋 in which Alice

and Bob are respectively given finite words 𝑢 ∈ A∗ and 𝑣 ∈ A∗ such that
|𝑢| + |𝑣| = 𝑛, and should determine whether 𝑢𝑣 forms a valid pattern in𝑋.
Formally,

CC𝑛,𝑋 = {(𝑢, 𝑣) ∈
𝑛
⋃
𝑘=0

A𝑘 ×A𝑛−𝑘 ∶ ∃𝑥 ∈ 𝑋, 𝑢𝑣 ⊑ 𝑥}.

Lemma 15.9. A ℤ subshift𝑋 ⊆ Aℤ𝑑 is sofic if and only ifN(CC𝑛,𝑋) = 𝑂(1).

Draft: June 5, 2025 at 14:45.

140 15 Perspectives: soficity and communication complexity

[GJ15] Guillon and Jeandel, Infinite Com-
munication Complexity.
[DLS08] Durand, Levin, and Shen,
“Complex tilings”.
[DRS12] Durand, Romashchenko, and
Shen, “Fixed-point tile sets and their ap-
plications”.
[Sim15] Simpson, “Symbolic dynamics:
entropy = dimension = complexity”.
[DR22] Destombes and Romashchenko,
“Resource-bounded Kolmogorov complex-
ity provides an obstacle to soficness ofmul-
tidimensional shifts”.
168 Essentially, a picture language is a lan-
guage of finite rectangular patterns; and a
picture language is recognizable if it is the
projection of a local picture language. See
Section 15.5.1 for more details.
[Ter19] Terrier, “Communication com-
plexity tools on recognizable picture lan-
guages”.

169 For example, consider the mirror sub-
shift onℤ: its free lift is not sofic, as theℤ2

mirror subshift would be sofic otherwise.

Proof.
⟹ If𝑋 is sofic, then fix a local cover𝑋′ ⊆ Bℤ of𝑋 a projection 𝜋∶ B → A

such that 𝜋(𝑋′) = 𝑋. Then Alice can pick an arbitrary preimage of 𝑢
under 𝜋, Bob an arbitrary preimage of 𝑣 under 𝜋, and communicate
their respective rightmost and leftmost symbols to ensure that the
concatenation of these preimages is valid in𝑋′.

⟸ Fix 𝑛 ∈ ℕ, and assume that N(CC𝑛+𝑁,𝑋) ≤ log𝐾 for some constant
𝐾 ∈ ℝ+ and for every 𝑁 ∈ ℕ. By definition, for every 𝑁 ∈ ℕ, there
exists a protocol (𝑇 ,𝑅𝐴, 𝑅𝐵) for 𝐶𝑛+𝑁,𝑋 such that |𝑇 | ≤ 𝐾.
Notice that for any 𝑢 ∈ A𝑛:

𝐹𝑋(𝑢)|⟦𝑁⟧ = ⋃
𝑡∈𝑇∶ (𝑢,𝑡)∈𝑅𝐴

{𝑣 ∈ A𝑁 ∶ (𝑣, 𝑡) ∈ 𝑅𝐵}.

In particular, 𝐹𝑋(𝑢)|⟦𝑁⟧ is entirely determined by {𝑡 ∈ 𝑇∶ (𝑢, 𝑡) ∈ 𝑅𝐴}.
Since 𝑇 is finite, this implies that, for every 𝑛 ∈ ℕ and every 𝑁 ∈ ℕ:

|{𝐹𝑋(𝑢)|⟦𝑁⟧ ∶ 𝑢 ∈ A𝑛}| ≤ 2|𝑇 | ≤ 2𝐾.

Now, for any two words 𝑢, 𝑢′ ∈ A𝑛 such that 𝐹𝑋(𝑢) ≠ 𝐹𝑋(𝑢′), there
exists 𝑁 ∈ ℕ such that 𝐹𝑋(𝑢)|⟦𝑁⟧ ≠ 𝐹𝑋(𝑢′)|⟦𝑁⟧ (compactness). Thus,
since the previous bound was valid for every 𝑁 ∈ ℕ, we obtain:

|{𝐹𝑋(𝑢) ∶ 𝑢 ∈ A𝑛}| ≤ 2𝐾.

By Proposition 6.5, we conclude that𝑋 is sofic.

15.3 Communication complexity of
multidimensional subshifts

A generalization of communication complexity to an infinite setting was
introduced quite recently [GJ15] with the explicit goal to study multidimen-
sional sofic subshifts: to the best of our knowledge, this was the first use of
communication complexity within symbolic dynamics. In fact, as opposed to
Kolmogorov complexity – which is already mentioned in [DLS08], [DRS12,
Section 7], [Sim15] or [DR22] – communication complexity seems to have
gained little traction in the subshift community; although it may be more
popular within the twin community of picture languages168 [Ter19].
Yet, communication complexity could be a great tool for the study of sofic

multidimensional subshifts, in particular in a ressource-bounded context.
For example, the statement of Theorem 10.11 could certainly be understood
as a quantification of the data communicated between 2𝑑 adjacent (hyper)cu-
bic patterns with limited computational power to decide whether they are, in
a sense, “locally admissible”.While it does not provide a full characterization
of multidimensional soficity, communication complexity seems like a fitting
framework for formalizations of the information-bounding intuitions.

Many questions arise from the intersection of communication complexity
and multidimensional sofic subshifts. For example, [GJ15] explicitely aimed
at studying the soficity of free lifts of one-dimensional subshifts.

Question 15.10. Let𝑋 ⊆ Aℤ be a subshift. If𝑋⇌ ⊆ Aℤ2 is a sofic subshift,
must the subshift𝑋 be sofic?

On ℤ2, the free lift 𝑋⇌ of a ℤ sofic subshift 𝑋must be sofic; and while
Proposition 3.44 (which shows that effective ℤ subshifts have sofic periodic
lifts on ℤ2) cannot be generalized to free lifts169, we cannot exclude at the

Draft: June 5, 2025 at 14:45.

15.4 Example: the problem N1 141

170 We explicitely consider where said
counting argument can go wrong in Ques-
tion 15.26.

171 Fooling pairs are a list of pairs
(𝑎(𝑖), 𝑏(𝑖))𝑖∈𝐼 such that the pair (𝑎(𝑖), 𝑏(𝑗))
is valid if and only if 𝑖 = 𝑗.

3 (…0100, 1000…)
7 (…0100, 0010…)

Figure 15.1: Examples of valid and non-
valid entries of N1𝑛.

moment the existence of ℤ non-sofic subshifts admitting sofic free lifts.
Indeed, as in Proposition 15.7 and Example 15.8, it might be possible to find
a non-sofic subshift of low communication complexity (for example,∼ log𝑛)
such that the communication complexity of 𝑛 parallel configurations reduces
to 𝑂(𝑛) (instead of the expected ∼ 𝑛 log𝑛).
The perceptive reader might notice that such examples fall within the

case of linear complexity, i.e. when the amount of information crossing the
domain of a pattern ⟦𝑛⟧𝑑 equals the size of its border 𝑂(𝑛𝑑−1). It is also the
case missed by our Theorem 10.11.

At the moment, I believe that we lack the tools to properly study the diffi-
cult cases of multidimensional soficity. Our most used tool for non-soficity
is a counting argument from the ℤ2 mirror subshift (Proposition 7.1), which
goes wrong when exchanging patterns in configurations does not necessarily
introduce forbidden patterns170. Parallels could be drawn with communica-
tion complexity: for example, the computation ofN(EQ𝑛) in Example 15.4
is an instance in which the counting argument applies, because of the ex-
istence of fooling pairs171. Even more interesting, the complexity of dual
communication problem NE𝑛 can be explicitely computed (Example 15.5);
even though it admits no fooling pairs, and thus no counting argument.
Our hope is that communication complexity could provide the necessary

tools to answer the equivalent questions in symbolic dynamics. To illustrate
this perspective with an example, the rest of this chapter begins the study
of various subshifts based on the communication problem ∧𝑛

𝑖=1N1𝑛. This
endeavor leaves many questions unanswered, and should be considered as
an opening to later studies.

15.4 Example: the problem N1

15.4.1 The problem N1

Fix 𝑛 ∈ ℕ, and let us denote𝑊𝑛,1 = {𝑤 ∈ {0, 1}𝑛 ∶ |𝑤|1 = 1} the set of words
of length 𝑛 containing exactly one symbol 1. We define the communication
problem N1𝑛 in which Alice and Bob are respectively given two strings
𝑢, 𝑣 ∈ 𝑊𝑛,1, and want to check that 𝑢 and 𝑣 are not mirrors of each other.
Formally, denote 𝑣(𝑖) ∈ 𝑊𝑛,1 the binary string of length 𝑛 whose single

symbol 1 is at position 𝑖 ∈ ⟦𝑛⟧; and 𝑢(𝑖) ∈ 𝑊𝑛,1 the mirror of 𝑣(𝑖), i.e. the
string whose single symbol 1 is at position 𝑛 − 1 − 𝑖. Then:

N1𝑛 = {(𝑢(𝑝), 𝑣(𝑞)) ∈ 𝑊 2
𝑛,1 ∶ 𝑝 ≠ 𝑞}.

Proposition 15.11. N(N1𝑛) = 𝜃(log log𝑛).

Proof. To prove thatN(N1𝑛) = 𝑂(log log𝑛), take (𝑢(𝑝), 𝑣(𝑞)) ∈ N1𝑛. Alice and
Bob have to ensure that 𝑝 ≠ 𝑞: to proceed, Alice non-deterministically picks
an index 𝑖 ∈ ⟦log𝑛⟧ and sends 𝑖 to Bob, along with the 𝑖th bit of the binary
expansion of 𝑝; Bob compares it with the 𝑖th bit of the binary expansion of 𝑞,
and accepts only if these two bits differ.
The converseN(N1𝑛) ≥ log log𝑛 is similar to Example 15.5.

The complexity of N1𝑛 is not additive under direct sums, which makes ℤ2

subshifts based on N1𝑛 interesting candidates for our purposes:

Proposition 15.12. Consider the problem ∧𝑛
𝑖=1N1𝑛 in which Alice and Bob are

respectively given matrices 𝑈 ∈ {0, 1}𝑛×𝑛 and 𝑉 ∈ {0, 1}𝑛×𝑛 containing exactly
one symbol 1 per line, and want to check that each pair of lines (𝑈𝑖, 𝑉𝑖) ∈ 𝑊𝑛,1
verifies (𝑈𝑖, 𝑉𝑖) ∈ N1𝑛, i.e. 𝑈𝑖 and 𝑉𝑖 are not symmetric of each other. Formally,

∧𝑛
𝑖=1N1𝑛 = {(𝑈, 𝑉) ∈ (𝑊 𝑛

𝑛,1)2 ∶ ∀𝑖, (𝑈𝑖, 𝑉𝑖) ∈ N1𝑛}.

Draft: June 5, 2025 at 14:45.

142 15 Perspectives: soficity and communication complexity

ThenN(∧𝑛
𝑖=1N1𝑛) = 𝑂(𝑛).

While this result is well-known, as a direct special case of Example 15.8,
this section is actually dedicated to another proof of this result. We aim at
keeping the methods involved as elementary and simple as possible, so that
we can implement them as a picture language in Section 15.5.

15.4.2 Sample spaces and Linear Feedback Shift Registers
(LFSRs)

Before we begin the proof of Proposition 15.12, we make a quick digression
by the lands of sample spaces and linear feedback shift registers:

Definition 15.13 (Sample space). For 𝑛 ∈ ℕ, a sample space is a subset
𝑆 ⊆ {0, 1}𝑛. It is (𝜀, 𝑘)-independent if for every set of positions 𝑖1 < ⋯ < 𝑖𝑘
and every binary string 𝑡 ∈ {0, 1}𝑘, we have:

|𝑃𝑟∈𝑆(𝑟𝑖1 …𝑟𝑖𝑘 = 𝑡) − 2−𝑘| ≤ 𝜀,

where 𝑟 ∈ 𝑆 is chosen uniformly at random in 𝑆.

In other words, a sample space is a subset of the whole set {0, 1}𝑛; it is
(𝜀, 𝑘)-independent if is (up to 𝜀) indistinguishable from a true uniform
random sampling on {0, 1}𝑛 for subwords of length 𝑘.

Definition 15.14 (LFSR). A Linear Feedback Shift Register (LFSR) is a
pair of finite sequences 𝑓 ∈ {0, 1}𝑚 and 𝑠 ∈ {0, 1}𝑚. It generates a shift register
sequence (𝑟𝑖)𝑖∈ℕ defined as follows:

𝑟𝑖 = {
𝑠𝑖 if i < m
∑𝑚−1

𝑗=0 𝑓𝑖𝑟𝑖−𝑚+𝑗 otherwise.

We are interested in LFSRs for two reasons: they are easy to implement
into tilings (see Section 15.5); and they generate (𝜀, 𝑘)-independent samples
spaces.

[Alo+90] Alon et al., “Simple construc-
tions of almost 𝑘-wise independent ran-
dom variables”.

Lemma 15.15 ([Alo+90]). Let 𝑆𝑚,𝑛 be the set of all shift register sequences
generated by non-degenerate LFSRs172

172 i.e The feedback rule 𝑓 ∈ {0, 1}𝑚 is
non-degenerate if the associated polyno-
mial 𝑡𝑚 +∑𝑚−1

𝑗=0 𝑓𝑗 ⋅ 𝑡𝑗 is irreducible.

. Then 𝑆𝑚,𝑛 is a (2𝑛
2𝑚 , 𝑘)-independent

sample space for every 𝑘 ∈ ⟦𝑛⟧.

For the sake of completeness, we mention the standard proof:

Proof. A sample space𝑆 ⊆ {0, 1}𝑛 is said to be 𝜀-biased (with respect to linear
tests) if, for𝑋 chosen uniformly at random and for every 𝛼 ∈ {0, 1}𝑛 ∖ {0}𝑛,
we have |𝑃(⟨𝑋, 𝛼⟩ = 1) − 𝑃(⟨𝑋, 𝛼⟩ = 0)| ≤ 𝜀.
The proof is divided in two claims:

Claim ([Alo+90, Proposition 1]). For every𝑚,𝑛 ∈ ℕ, the sample space 𝑆𝑚,𝑛
is 𝑛−1

2𝑚 ⋅ (1 + 𝑂(2𝑚/2))-biased.

For fixed 𝑓 ∈ {0, 1}𝑚 and 𝛼 ∈ {0, 1}𝑛, we define the following two poly-
nomials 𝑓(𝑡) = 𝑡𝑚 +∑𝑚−1

𝑗=0 𝑓𝑗𝑡𝑗 and 𝑔(𝑡) = ∑𝑛−1
𝑗=0 𝛼𝑗𝑡𝑗.

We then consider the inner products ⟨𝑟, 𝛼⟩, for 𝑟 ∈ {0, 1}𝑛 ranging among
the shift register sequences generated by all seeds 𝑠 ∈ {0, 1}𝑚. Notice that
the bits {𝑟𝑗}0≤𝑗<𝑛 are, by induction, linear combinations of 𝑠0, 𝑠1, …, 𝑠𝑚−1;
and that the coefficients of these linear combinations turn out to be exactly
the coefficients obtained by reducing any 𝑡𝑗 modulo 𝑓(𝑡). Since ⟨𝑟, 𝛼⟩ is a
linear combination of {𝑟𝑗}0≤𝑗<𝑛 (whose coefficients are the reduction of 𝑔
modulo 𝑓), two cases occur:

Draft: June 5, 2025 at 14:45.

15.4 Example: the problem N1 143

173 Formally, this number is

1
𝑚

∑
𝑑∣𝑚

𝜇(𝑚
𝑑
)2𝑑,

where 𝜇 is the usual Möbius function.

175 Look, a Fourier coefficient in the wild!

• Either ⟨𝑟, 𝛼⟩ is identically 0, in which case 𝑔(𝑡) is divided by 𝑓(𝑡).
• Or ⟨𝑟, 𝛼⟩ is not identically 0, in which case it is a non-constant linear
combination of 𝑠0, …, 𝑠𝑚−1 and is thus uniformly distributed when
𝑠 ∈ {0, 1}𝑚 is chosen uniformly.

Hence, the bias of ⟨𝑟, 𝛼⟩ (for 𝑟 chosen uniformly from 𝑆𝑚,𝑛) is exactly
the probability that 𝑓(𝑡) divides 𝑔(𝑡), which is bounded by the number of
irreducible monic polynomials of degree𝑚 dividing a given polynomial of
degree 𝑛 − 1. Since a polynomial of degree 𝑛 − 1 can be divided by at most
𝑛−1
𝑚 such irreducible monic polynomials, dividing by the number of said
irreducible monic polynomials 1

𝑚 ⋅ (2𝑚 +𝑂(2𝑚/2)) concludes the proof173.

Claim ([Alo+90, Lemma 1]174).

174 This result is attributed to Vazirani.
Usually proved using Fourier analysis, the
claim is considerably simplified on finite
groups.

Let 𝑆 ⊆ {0, 1}𝑛 be an 𝜀-biased sample space
(with respect to linear tests). Then 𝑆 is (𝜀, 𝑘)-independent for every 𝑘 ∈ ℕ.

Let𝑋 be a uniform random variable in 𝑆 such that, for any 𝛽 ≠ 0, we have
|𝑃(⟨𝑋, 𝛽⟩ = 1) − 𝑃(⟨𝑋, 𝛽⟩ = 0)| ≤ 𝜀. And pick 0 ≤ 𝑖1 < ⋯ < 𝑖𝑘 < 𝑛 some
indices. Denoting 𝜒𝛽(𝛼) = (−1)⟨𝛼,𝛽⟩ for 𝛼, 𝛽 ∈ {0, 1}𝑘, we have:

• For any 𝛼, 𝛽 ∈ {0, 1}𝑘, ∑𝛽 𝜒𝛽(𝛼) = {
2𝑘 if 𝛼 = 0𝑘

0 otherwise.

• For any 𝛼, 𝛼′, 𝛽 ∈ {0, 1}𝑘, 𝜒𝛽(𝛼) ⋅ 𝜒𝛽(𝛼′) = 𝜒𝛽(𝛼 + 𝛼′).

For 𝛽 ∈ {0, 1}𝑘, we introduce175 𝑐𝛽 = ∑𝛼 𝑃(𝑋𝑖1,…,𝑖𝑘 = 𝛼) ⋅ 𝜒𝛽(𝛼). Notice
that 𝑐𝛽 = 1 if 𝛽 = 0𝑘, and that if 𝛽 ≠ 0𝑘 we have:

𝑐𝛽 = ∑
𝛼∣⟨𝛼,𝛽⟩=0

𝑃(𝑋𝑖1,…,𝑖𝑘 = 𝛼) − ∑
𝛼∣⟨𝛼,𝛽⟩=1

𝑃(𝑋𝑖1,…,𝑖𝑘 = 𝛼)

= 𝑃(⟨𝑋𝑖1,…,𝑖𝑘 , 𝛽⟩ = 0) − 𝑃(⟨𝑋𝑖1,…,𝑖𝑘 , 𝛽⟩ = 1),

so that |𝑐𝛽| ≤ 𝜀 (by hypothesis). Then, for 𝛼 ∈ {0, 1}𝑘, we have:

∑
𝛽

𝜒𝛽(𝛼) ⋅ 𝑐𝛽 = ∑
𝛽

∑
𝛼′

𝜒𝛽(𝛼) ⋅ 𝜒𝛽(𝛼′) ⋅ 𝑃(𝑋𝑖1,…,𝑖𝑘 = 𝛼′)

= ∑
𝛼′

𝑃(𝑋𝑖1,…,𝑖𝑘 = 𝛼′)∑
𝛽

𝜒𝛽(𝛼 + 𝛼′)

= ∑
𝛼′

𝑃(𝑋𝑖1,…,𝑖𝑘 = 𝛼′) ⋅ 2𝑘𝛿𝛼=𝛼′

= 2𝑘 ⋅ 𝑃(𝑋𝑖1,…,𝑖𝑘 = 𝛼).

Thus:

𝑃(𝑋𝑖1,…,𝑖𝑘 = 𝛼) ≤ 1
2𝑘

∣∑
𝛽≠0

𝜒𝛽(𝛼) ⋅ 𝑐𝛽∣ ≤
1
2𝑘

∑
𝛽≠0

|𝜒𝛽(𝛼)| ⋅ |𝑐𝛽| ≤
2𝑘−1

2𝑘
𝜀.

15.4.3 A construction for ∧𝑛
𝑖=1N1𝑛

We now go back to ∧𝑛
𝑖=1N1𝑛 and, using the sample space 𝑆𝑚,𝑛 for well-

chosen values of 𝑚, provide an explicit non-deterministic protocol with
communication 𝑂(𝑛).

Proof. Let 𝑈, 𝑉 ∈ {0, 1}𝑛×𝑛 be the matrices given respectively to Alice and
Bob. We denote their lines by 𝑈𝑖 ∈ 𝑊𝑛,1 and 𝑉𝑖 ∈ 𝑊𝑛,1, and denote by 𝑝𝑖
(resp. 𝑞𝑖) the integers such that 𝑈𝑖 = 𝑢(𝑝𝑖) and (resp. 𝑉𝑖 = 𝑣(𝑞𝑖)).

Inner products Let us assume that Alice and Bob can generate, non-
determnistically, the same binary matrix 𝐶 ∈ {0, 1}𝑛×𝑛. Then Alice and Bob
can solve the problem ∧𝑛

𝑖=1N1𝑛 by exchanging 𝑂(𝑛) bits:
• Alice and Bob non-deterministically generate a common binary matrix
𝐶 ∈ {0, 1}𝑛×𝑛 such that 𝐶𝑖,𝑝𝑖

≠ 𝐶𝑖,𝑞𝑖 (which is only possible if 𝑝𝑖 ≠ 𝑞𝑖).

Draft: June 5, 2025 at 14:45.

144 15 Perspectives: soficity and communication complexity

176 It is (2𝑛 log𝑛25 log𝑛 , 𝑘)-independent, thus a
fortiori (1

𝑛3 , 𝑘) independent.

• Alice and Bob each compute the inner products ⟨𝑈𝑖, ̄𝐶𝑖⟩ and ⟨𝑉𝑖, 𝐶𝑖⟩
(where ̄𝐶𝑖 is the mirror of 𝐶𝑖) as elements of 𝔽2.

• Alice sends the result of her inner products as a vector 𝑅 ∈ 𝔽𝑛
2 , and

Bob accepts if and only if 𝑅𝑖 ≠ ⟨𝑉𝑖, 𝐶𝑖⟩ for every 𝑖.

Transmitting binary matrices efficiently We thus reduced the problem
∧𝑛
𝑖=1N1𝑛 to exchanging a binary matrix with only 𝑂(𝑛) bits, which might
not seem much easier (in fact, there are 2𝑛2 distinct binary matrices, so it is
completely hopeless).
However, Alice and Bob do not actually need to generate the whole set

{0, 1}𝑛×𝑛 of binary matrices: they can just generate a subset 𝑆 ⊆ {0, 1}𝑛×𝑛

that is actually large enough so that, for all sets of distinct integers 𝑝𝑖, 𝑞𝑖 ∈ ⟦𝑛⟧
(𝑖 ∈ ⟦𝑛⟧), there exists 𝐶 ∈ 𝑆 such that 𝐶𝑖,𝑝𝑖

≠ 𝐶𝑖,𝑞𝑖 for every 𝑖 ∈ ⟦𝑛⟧.
Let us fix𝑚 = 5 log𝑛. By Lemma 15.15, the space𝑆𝑚,𝑛 log𝑛 of all shift regis-

ter sequences generated by non-degenerate LFSRs is176 (1
𝑛3 , 𝑘)-independent

for every 𝑘 ∈ ⟦𝑛⟧.
• Let us divide ⟦𝑛⟧ × ⟦𝑛⟧ into block of log𝑛 rows and 𝑛 columns.
• Send 𝑛

log𝑛 tuples (𝑓𝑁, 𝑠𝑁) ∈ ({0, 1}𝑚)2 to associate one LFSR per such
block, and use these LFSRs to generate the blocks of the matrix 𝐶.

Let us denote by 𝑆 ⊆ {0, 1}𝑛×𝑛 the set of matrices generated by this process.
Each element 𝐶 ∈ 𝑆 is determined by the pairs (𝑓, 𝑠) generating the LFSRs,
which amounts to 𝑛

log𝑛 ⋅ (5 log𝑛) = 𝑂(𝑛) bits. We are left with checking
that the set of matrices generated by this process is able to distinguish all
pairs of positions, i.e. that for any (𝑝𝑖, 𝑞𝑖)0≤𝑖<𝑛, there exists 𝐶 ∈ 𝑆 such that
𝐶𝑖,𝑝𝑖

≠ 𝐶𝑖,𝑞𝑖 .
Since all blocks of log𝑛 rows are defined by independent LFSRs, let us

focus on the first lines and prove that there exists an LFSR that generates
a block 𝐶′ ∈ {0, 1}log𝑛×𝑛 such that 𝐶′

𝑖,𝑝𝑖
≠ 𝐶′

𝑖,𝑞𝑖 for 0 ≤ 𝑖 < log𝑛. Notice
that each these blocks needs to distinguish between 2 log𝑛 pairs of positions.
Once again, let 𝑋 ∈ 𝑆𝑚,𝑛 log𝑛 be taken uniformly at random. By (1

𝑛3 , 𝑘)-
independence,

∣𝑃(∧log𝑛−1
𝑖=0 (𝑋𝑖,𝑝𝑖

= 1 ∧𝑋𝑖,𝑞𝑖 = 0)) − 1
22 log𝑛

∣ ≤ 1
𝑛3 ,

so that 𝑃(∧log𝑛−1
𝑖=0 𝑋𝑖,𝑝𝑖

≠ 𝑋𝑖,𝑞𝑖) > 0: there exists a non-degenerate LFSR
(and, thus, an LFSR) that distinguishes all needed pairs of positions in the
block. Joining all blocks, there must exists 𝐶 ∈ 𝑆 that distinguishes between
the pairs (𝑝𝑖, 𝑞𝑖)0≤𝑖<𝑛.

15.5 N1 as picture languages

We proved that 𝑛 parallel instances of the problem N1𝑛 can actually be solved
by communicating only 𝑂(𝑛) bits. We now consider the implementation of
∧𝑛
𝑖=1N1𝑛, and of the relevant protocol, into a picture language.

15.5.1 Picture languages

Let A be a finite alphabet, and let us fix a symbol # ∉ A. Let us denote
R = ⋃𝑚,𝑛∈ℕ⟦𝑚⟧ × ⟦𝑛⟧ the set of all finite rectangles in ℤ2, andA𝑅 the set
of all colorings ofR by the symbols ofA.

Definition 15.16.Recall that I(𝐷) denotes the interior of a
domain𝐷 ⊆ ℤ𝑑, and 𝜕(𝑅) its border.

For𝑅′ ∈ R and𝑅 = I(𝑅′), a picture is a coloring𝑤 ∈ A𝑅.
Given a picture 𝑤 ∈ A𝑅, the associated bordered picture �̂� is the coloring of
(A ∪ {#})𝑅 such that �̂�|I(𝑅′) = 𝑤 ∈ A𝑅 and �̂�𝑖 = # for 𝑖 ∈ 𝜕(𝑅′).

Draft: June 5, 2025 at 14:45.

15.5 N1 as picture languages 145

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

Figure 15.2: Sketch of a configuration of
𝑋[𝐿]: gray rectangles represent valid pic-
tures in 𝐿.

A picture language is a subset 𝐿 ⊆ AR. The associated bordered language is
the set of associated bordered pictures �̂� = {�̂� ∶ 𝑤 ∈ 𝐿}.

As in traditional formal languages, picture languages can be classified
depending on their complexity. For our needs, we focus on the classes of
local and recognizable picture languages.

Definition 15.17. A picture language 𝐿 ⊆ AR is local if there exists a set
of local 2 × 1 and 1 × 2 forbidden patterns F such that �̂� is the set of bordered
pictures in which none of the patterns of F appear.

Definition 15.18. A picture language 𝐿 ⊆ AR is recognizable if there exists
an alphabet B, a local picture language 𝐿′ ⊆ BR and a projection 𝜋∶ B → A
such that 𝐿 = 𝜋(𝐿′).

As the definitions may suggest, picture languages are very similar to sofic
subshifts. In particular, when given a picture language 𝐿, we can define
the subshift 𝑋[𝐿] made of non-overlapping pictures of 𝐿 floating over a
background of symbols#:

𝑋[𝐿] = {𝑥 ∈ (A ∪ {#})ℤ2 ∶ ∃𝐽, ∃(𝑅𝑗)𝑗∈𝐽 ∈ R𝐽,I(𝑅𝑗1) ∩ I(𝑅𝑗2) = ∅ if 𝑗1 ≠ 𝑗2,

⊔
𝑗∈𝐽

𝑅𝑗 = {𝑖 ∈ ℤ2 ∶ 𝑥𝑖 ≠ #} and ∀𝑗 ∈ 𝐽, 𝑥|𝑅𝑗
∈ �̂�}

Proposition 15.19. If 𝐿 is a recognizable picture language, then𝑋[𝐿] is a sofic
subshift.

Sketch of proof. Let 𝐿′ be a local language projecting onto 𝐿, and 𝐿′ be the
associated bordered language. The forbidden patterns of 𝐿′ define an SFT
𝑋 ⊆ (A′ ∪ {#})ℤ2 . By additionally enforcing that patterns over the alphabet
A′ are actually organized into rectangles, we obtain a sofic subshift whose
projection toA is the subshift𝑋[𝐿].

15.5.2 Implementing N1 as a picture language

Wenow associate a two-dimensional picture language to the communication
problem N1.We proceed naively, by drawing the matrices 𝑈 and 𝑉 of Alice
and Bob and separating them by a column of symbols@. Formally, we define
the picture language 𝐿N1 ⊆ {0, 1,@}R associated with N1 as:

𝐿N1 = ⋃
𝑛∈ℕ

{𝑤 ∈ {0, 1,@}⟦2𝑛+1⟧×⟦𝑛⟧ ∶ ∀𝑖 ∈ ⟦𝑛⟧, ∃𝑝, 𝑞 ∈ ⟦𝑛⟧,

𝑝 ≠ 𝑞 and 𝑤|⟦2𝑛+1⟧×{𝑖} = 𝑢(𝑝)@𝑣(𝑞)}.

@0 00 00 00 01 00 00 00 10 00 0
@0 00 00 00 11 00 00 00 00 00 0
@0 00 00 00 00 00 10 00 00 01 0
@0 00 01 00 00 00 00 00 10 00 0
@0 00 00 00 00 10 00 00 01 00 0
@0 10 00 01 00 00 00 00 00 00 0
@0 00 00 00 01 00 10 00 00 00 0
@0 00 00 00 00 10 00 00 00 01 0
@0 00 00 00 00 00 00 00 01 00 1
@0 00 00 01 00 00 00 00 00 10 0

Figure 15.3: A valid picture of 𝐿N1: the central column induces no symmetry
on any line.

Draft: June 5, 2025 at 14:45.

146 15 Perspectives: soficity and communication complexity

Unfortunately, we do not know whether 𝐿N1 is a recognizable picture
language. We can, however, prove its recognizability if we allow ourselves to
sparsify the columns. More precisely, for 𝑤 ∈ 𝐿N1 of size (2𝑛 + 1) × 𝑛, we
define 𝑤(𝑠) of size (2𝑛 log𝑛 + 1) × 𝑛 on the alphabet {0, 1, , @} as:

𝑤(𝑠)
𝑖,𝑗 =

⎧{{{
⎨{{{⎩

@ if 𝑖 = 𝑛 log𝑛
𝑤𝑗,(𝑗

log𝑛) if 𝑖 < 𝑛 log𝑛 and log𝑛 ∣ 𝑖

𝑤𝑗,(𝑗−1
log𝑛+1) if 𝑖 > 𝑛 log𝑛 and log𝑛 ∣ 𝑖 − 1

otherwise.

In other words, the columns in the left and right side of 𝑤(𝑠) have been
shifted by log𝑛 from one another, and the blanks have been filled with the
symbol . We then define the sparse picture language associated with N1 as
𝐿(𝑠)
N1 = {𝑤(𝑠) ∶ 𝑤 ∈ 𝐿N1} ⊆ {0, 1, , @}R.

@1 00 00 00 0
@0 00 11 00 0
@0 00 10 00 0
@0 00 01 00 1
@0 00 01 00 0
@0 00 00 01 0
@0 00 10 00 0
@0 00 00 10 0
@0 00 01 00 0
@0 00 00 00 0

Figure 15.4: Piece of a valid sparse picture of 𝐿(𝑠)
N1 .

We can then state the main result of this chapter:

Lemma 15.20. The picture language 𝐿(𝑠)
N1 is recognizable.

To prove that 𝐿(𝑠)
N1 is recognizable, we implement the protocol from thre

previous Section 15.4.3 into a picture language.

Proof. We begin by superimposing a grid of size log𝑛 × log𝑛 on each halve
of the pictures, where 𝑛 is the height of the picture: log𝑛 can be measured,
for example, by running a binary counter vertically (after 𝑛 steps, the bi-
nary counter has width log𝑛). Using this grid, we may assume that, as in
Section 15.4.3, the pictures are divided in blocks of log𝑛 rows, and draws a
special column every log𝑛 columns.
To ensure the right size of the pictures in our local language, send a

signal from the bottom-left and bottom-right corner horizontally towards
the center of the picture, which goes up each time it crosses a vertical line of
the grid, and should meet on the top row. This ensures that all pictures of
our local language are of size 𝑛 × (2𝑛 log𝑛 + 1).

Figure 15.5: Division of a picture (𝑛 = 4) into blocks of log𝑛 rows with marked -columns. Each -line marks the beginning of a new
block. The two signals ensure the correct size of the picture and positionning of the central column.

Draft: June 5, 2025 at 14:45.

15.5 N1 as picture languages 147

177 So that𝑤(0) = 𝑠.

For the rest of this proof, we reason on each block of log𝑛 rows indepen-
dently.

Computing an LFSR inside a block We want to make each column in a
block of log𝑛 rows contain:

• On a rule layer, a word 𝑓 ∈ {0, 1}5 log𝑛 written vertically (the same
word is written on all columns));

• On a random layer, a word 𝑤 ∈ {0, 1}5 log𝑛 written vertically (this word
may differ from column to column);

• On a computation layer, an auxiliary word 𝑎 ∈ {0, 1}5 log𝑛 (this word
may differ from column to column).

Since 5 log𝑛 > log𝑛, we compress the words by writing five letters per cell.
We then implement the computations of an LFSR run from the central

column (which, we recall, will have its cells projected to the symbol @)
towards the exterior. Since the left and right halves of the picture should
implement mirror computations of said LFSR, let us focus on the right half
of the block.
Let 𝑓 ∈ {0, 1}5 log𝑛 and 𝑠 ∈ {0, 1}5 log𝑛 be the words respectively written

on the rule layer and the random layer of the 0th (i.e. the central) column.
For 0 ≤ 𝑖 ≤ log𝑛, let us denote 𝑤(𝑖) the word written on the random layer of
the 𝑖th column177, and 𝑎(𝑖) the word written on its computation layer. Recall
that by definition, all columns have the word 𝑓 written on their rule layer;
and let (𝑟𝑛)𝑛∈ℕ be the sequence written by the LFSR (𝑓, 𝑠).

• In the 𝑖th column, we compute the inner product ⟨𝑓, 𝑤(𝑖)⟩ from bottom
to top by using the letters of the auxiliary word 𝑎(𝑖) as memory (in
other words, 𝑎(𝑖)𝑗 = ⟨𝑓|⟦𝑗⟧, 𝑤(𝑖)|⟦𝑗⟧). The last bit of 𝑎(𝑖) is then ⟨𝑓, 𝑤(𝑖)⟩.

• Going from the 𝑖th to the (𝑖 + 1)th column, we shift 𝑤(𝑖) one bit down
(i.e. 𝑤(𝑖+1)|⟦5 log𝑛−1⟧ = 𝑤(𝑖)|1+⟦5 log𝑛−1⟧), and copy the last bit of 𝑎(𝑖) as
the new value for 𝑤(𝑖+1)

5 log𝑛−1.

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

(𝑓70,𝑤
(5)
70) 𝑎(5)

70

(𝑓71,𝑤
(5)
71) 𝑎(5)

71

(𝑓72,𝑤
(5)
72) 𝑎(5)

72

(𝑓73,𝑤
(5)
73) 𝑎(5)

73

(𝑓74,𝑤
(5)
74) 𝑎(5)

74

(𝑓75,𝑤
(5)
75) 𝑎(5)

75(𝑓75,𝑤
(5)
75) 𝑎(5)

75

(𝑓76,𝑤
(5)
76) 𝑎(5)

76

(𝑓77,𝑤
(5)
77) 𝑎(5)

77

(𝑓78,𝑤
(5)
78) 𝑎(5)

78

(𝑓79,𝑤
(5)
79) 𝑎(5)79

(𝑓80,𝑤
(5)
80) 𝑎(5)

80

(𝑓70,𝑤
(6)
70) 𝑎(6)

70

(𝑓71,𝑤
(6)
71) 𝑎(6)

71

(𝑓72,𝑤
(6)
72) 𝑎(6)

72

(𝑓73,𝑤
(6)
73) 𝑎(6)

73

(𝑓74,𝑤
(6)
74) 𝑎(6)

74

(𝑓75,𝑤
(6)
75) 𝑎(6)

75(𝑓75,𝑤
(6)
75) 𝑎(6)

75

(𝑓76,𝑤
(6)
76) 𝑎(6)

76

(𝑓77,𝑤
(6)
77) 𝑎(6)

77

(𝑓78,𝑤
(6)
78) 𝑎(6)

78

(𝑓79,𝑤
(6)
79) 𝑎(6)79

(𝑓80,𝑤
(6)
80) 𝑎(6)

80

(𝑓70,𝑤
(7)
70) 𝑎(7)

70

(𝑓71,𝑤
(7)
71) 𝑎(7)

71

(𝑓72,𝑤
(7)
72) 𝑎(7)

72

(𝑓73,𝑤
(7)
73) 𝑎(7)

73

(𝑓74,𝑤
(7)
74) 𝑎(7)

74

(𝑓75,𝑤
(7)
75) 𝑎(7)

75(𝑓75,𝑤
(7)
75) 𝑎(7)

75

(𝑓76,𝑤
(7)
76) 𝑎(7)

76

(𝑓77,𝑤
(7)
77) 𝑎(7)

77

(𝑓78,𝑤
(7)
78) 𝑎(7)

78

(𝑓79,𝑤
(7)
79) 𝑎(7)79

(𝑓80,𝑤
(7)
80) 𝑎(7)

80

Figure 15.6: A few steps of computation of the LFSR in the local tiling.

In a block of height 𝑛 = 16, the LFSR
has length 80 = 16 ⋅ 5. The value of the
(𝑤(𝑖)

𝑗)𝑗∈⟦80⟧ in the column 𝑖 are entirely
determined by the column of index 𝑖−1: if
𝑗 < 79, then𝑤(𝑖)

𝑗 = 𝑤(𝑖−1)
𝑗+1 ; and if 𝑗 = 79,

then𝑤(𝑖)
𝑗 = 𝑎(𝑖−1)

79 .
By construction, ⟨𝑓,𝑤(𝑖)⟩ = 𝑎(𝑖)

79, so that
the LFSR sequence (𝑟𝑛)𝑛∈ℕ generated by
(𝑓,𝑤(0)) verifies 𝑟80+𝑖 = 𝑎(𝑖)

79.

At this point of the proof, every block of log𝑛 rows contains, in its top
row (more precisely, we consider the last bit in every column’s computation
layer), the shift register sequence of length 𝑛 log𝑛 generated by the pair
(𝑓, 𝑠) ∈ ({0, 1}5 log𝑛)2.

Draft: June 5, 2025 at 14:45.

148 15 Perspectives: soficity and communication complexity

178 The core idea follows the same princi-
ple: how do we create a set of 2𝑂(𝑛) binary
matrices 𝐶 that can distinguish between
any pairs of positions in every line while
being easily implemented as a picture lan-
guage?

Sending the generated bits to the next column Using wires, we move
the bits from this top row to the next special columns, so that cells of each
marked column contain distinct bits from the shift register sequence we just
built:

𝑟12 𝑟13 𝑟14 𝑟15 𝑟16 𝑟17 𝑟18 𝑟19 𝑟20 𝑟21 𝑟22 𝑟23 𝑟24 𝑟25 𝑟26 𝑟27 𝑟28 𝑟29

𝑟8

𝑟9

𝑟10

𝑟11

𝑟12

𝑟13

𝑟14

𝑟16

𝑟17

𝑟18

𝑟19

𝑟20

𝑟21

𝑟22

Figure 15.7: Moving the shift register sequence from the top row of a block
to the marked columns.

We say that the bits of the shift register sequence appearing on themarked
columns form the random layer of the picture.

Final adjustements We can finally add the input bits that Alice and Bob
(respectively on the left and right half of each picture) will be comparing.
These input bits appear on all cells that belong to a marked column. Since
the language associated with the expression 0∗ ⋅1⋅0∗ is regular, we can ensure
that at most a single symbol 1 appears on each halve of each line.
Then, using horizontal wires, we make all marked cells containing a

symbol 1 send the bit of its random layer towards the central column of the
picture, and compare the two bits sent respectively by the left and right half
of the picture. On every line, we finally forbid these two bits to be equal.
Since we implemented the protocol introduced in Section 15.4.3, the

resulting picture language is indeed 𝐿(𝑠)
N1 .

From Lemma 15.20, we immediately obtain that the associated subshift
is sofic:

Corollary 15.21. The sparse subshift𝑋[𝐿(𝑠)
N1] ⊆ {#, 0, 1, , @}ℤ2 is sofic.

15.5.3 Perspectives

Remark 15.22. We chose sparsification log𝑛 in 𝐿(𝑠)
N1 because it is the size of

the LFSRs. Yet, by superimposing several layers of the same construction, we
can actually strengthen this result and prove that 𝐿(𝑠)

N1 is recognizable for any
sparsification that is an iterated logarithmic function log log log… .

This immediately leads to the following question:

Question 15.23. Can we remove the sparsification between columns? In other
words, is 𝐿N1 a recognizable picture language?

Trying to solve this, we came up with this seemingly unrelated question178
on cellular automata:

Question 15.24. Does there exist a cellular automaton 𝜑 ∶ Aℤ → Aℤ such that,
for every positions 𝑖1, 𝑗1, 𝑖2, 𝑗2 ∈ ℤ and for and every configuration 𝑦 ∈ Aℤ that
verifies 𝑦𝑖2 ≠ 𝑦𝑗2 , there exists another configuration 𝑥 ∈ Aℤ such that 𝑥𝑖1 ≠ 𝑥𝑗1
and 𝜑(𝑥) = 𝑦?

Essentially, 𝜑 would allow, in its space-time diagrams, to have arbitrary
pairs of unrelated constraints at each time step.

Draft: June 5, 2025 at 14:45.

15.6 N1 as subshifts 149

0 0 0 1 0 0 @ 0 0 0 0 0 1 0 0 0

Figure 15.8: A configuration of𝑋N1.

15.6 N1 as subshifts

15.6.1 The subshift𝑋N1

Instead of going through picture languages, one can directly define a subshift
𝑋N1 ⊆ {0, 1,@}ℤ as:

𝑋N1 = {0−ℕ10𝑝 @0𝑞10ℕ ∶ 𝑝 ≠ 𝑞};

in other words, if a configuration contains a symbol @, then the symbols 1’s
(if they exist) are not mirrors of each other.
Of course, this subshift is not sofic:

Proposition 15.25. 𝑋N1 ⊆ {0, 1,@}ℤ is not sofic.

Proof. The words 𝑤𝑝 = 10𝑝@ all have distinct extender sets in 𝑋N1, since
they can be followed by the word 0𝑞1 if and only if 𝑞 ≠ 𝑝. By Proposition 6.5,
𝑋N1 is not sofic.

15.6.2 Free lift and soficity

Let us consider the free lift 𝑋⇌
N1 ⊆ {0, 1,@}ℤ2 of 𝑋N1. Its soficity is still an

open problem:

Question 15.26. Is𝑋⇌
N1 ⊆ {0, 1,@}ℤ2 a sofic subshift?

I believe this to be an interesting case to studyQuestion 15.10: the subshift
𝑋⇌
N1 is not obviously sofic; but disproving its soficness would probably require
novel methods and arguments. Indeed, it is interesting to consider where
typical proofs of non-soficity go wrong in the case of𝑋⇌

N1:

Argument sketch. Let us consider 𝑆 ⊆ {0, 1,@}⟦𝑛,𝑛⟧, the square patterns of
size 𝑛 × 𝑛 whose right border is a column of symbols @. Since there can be
at most a single symbol 1 per line, there are 𝑛 possibilities per line for these
patterns, thus |𝑆| = 𝑛𝑛.
However, assuming that𝑋⇌

N1 is a sofic subshift, there could only be 2𝑂(𝑛)

preimages for the border 𝜕(⟦𝑛, 𝑛⟧). Thus, in valid configurations of 𝑋⇌
N1,

there exists several patterns of 𝑆 whose occurences can be exchanged.

Where does this proof go wrong? As opposed to the mirror subshift case,
exchanging patterns in a configuration of𝑋⇌

N1 does not necessarily introduce
a forbidden pattern. In fact, the pattern 𝑤𝑝 = …10𝑝@ can be completed by
all partial configurations except one. Thus, the usual combinatorial argument
for non-soficity (comparing the number of valid patterns with the size of the
border) does not apply here, in the same way the “fooling pair” argument
from communication complexity does not apply on N1.

15.6.3 Perspectives

One main obstacle to proving the soficness of 𝑋N1 is that lines of a con-
figuration need to be completely independent. However, we would not be
surprised if𝑋∣

N1 ⊆ {0, 1,@}ℤ2 (the restriction of𝑋⇌
N1 in which symbols@ are

vertically aligned) turned out to be a sofic subshift.
Thus, we see two directions of study for the soficity of𝑋N1:
1. Study the soficity of𝑋∣

N1 ⊆ {0, 1,@}ℤ2 , in which symbols @ are verti-
cally aligned. A first step would be to remove the sparsification intro-
duced in the proof of Lemma 15.20, see Question 15.23.

Draft: June 5, 2025 at 14:45.

150 15 Perspectives: soficity and communication complexity

2. Study the picture language obtained from a variant of N1 in which the
symbols @ are no longer vertically aligned (in other words, Alice and
Bob’s binary strings are no longer necessarily of the same length).

Draft: June 5, 2025 at 14:45.

BIBLIOGRAPHY

Draft: June 5, 2025 at 14:45. 153

Personal bibliography
[CH20] Antonin Callard and Mathieu Hoyrup. “Descriptive complexity on non-Polish spaces”. In: STACS

2020. Volume 154. Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020, 8:1–8:16.
DOI: 10.4230/LIPIcs.STACS.2020.8 .

[CV21] Antonin Callard and Pascal Vanier. “Computational characterization of surface entropies for ℤ2 sub-
shifts of finite type”. In: ICALP 2021. Volume 198. Leibniz International Proceedings in Informatics
(LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021, 122:1–122:20.
DOI: 10.4230/LIPIcs.ICALP.2021.122 .

[CH22] Antonin Callard and Benjamin Hellouin de Menibus. “The aperiodic Domino problem in higher
dimension”. In: STACS 2022. Volume 219. Leibniz International Proceedings in Informatics (LIPIcs).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, 19:1–19:15.
DOI: 10.4230/LIPIcs.STACS.2022.19 .

[CS24] Antonin Callard and Ville Salo. “Distortion element in the automorphism group of a full shift”. In:
Ergodic Theory and Dynamical Systems 44.7 (2024), pages 1757–1817.
DOI: 10.1017/etds.2023.67 .

[CPV25] Antonin Callard, Léo Paviet Salomon, and Pascal Vanier. “Computability of extender sets in multidi-
mensional subshifts”. In: STACS 2025. Volume 327. Leibniz International Proceedings in Informatics
(LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2025, 21:1–21:19.
DOI: 10.4230/LIPIcs.STACS.2025.21 .

Draft: June 5, 2025 at 14:45. 155

https://doi.org/10.4230/LIPIcs.STACS.2020.8
https://doi.org/10.4230/LIPIcs.ICALP.2021.122
https://doi.org/10.4230/LIPIcs.STACS.2022.19
https://doi.org/10.1017/etds.2023.67
https://doi.org/10.4230/LIPIcs.STACS.2025.21

General bibliography
[Akl85] Selim G. Akl. Parallel sorting algorithms. Volume 12. Notes and Reports in Computer Science and

Applied Mathematics. Academic Press, 1985, pages xiii+229.
DOI: 10.1016/C2013-0-10281-4 .

[Alo+90] Noga Alon et al. “Simple constructions of almost 𝑘-wise independent random variables”. In: 31st
Annual Symposium on Foundations of Computer Science. Volume II. 1990, pages 544–553.
DOI: 10.1109/FSCS.1990.89575 .

[AS13] Nathalie Aubrun andMathieu Sablik. “Simulation of effective subshifts by two-dimensional subshifts
of finite type”. In: Acta Applicandae Mathematicae 126 (2013), pages 35–63.
DOI: 10.1007/s10440-013-9808-5 .

[AS14] Nathalie Aubrun and Mathieu Sablik. “Multidimensional effective S-adic subshifts are sofic”. In:
Uniform Distribution Theory 9.2 (2014), pages 7–29.
URL: https://pcwww.liv.ac.uk/~karpenk/JournalUDT/vol09/no2/02AubrunSablick.pdf .

[AV79] Dana Angluin and Leslie G. Valiant. “Fast probabilistic algorithms for Hamiltonian circuits and
matchings”. In: Journal of Computer and System Sciences 18.2 (1979), pages 155–193.
DOI: 10.1016/0022-0000(79)90045-X .

[Bat68] Kenneth E. Batcher. “Sorting networks and their applications”. In: AFIPS ’68 (American Federation
of Information Processing Societies). 1968 Spring Joint Computer Conference. Volume 32. AFIPS
Conference Proceedings. 1968, pages 307–314.
DOI: 10.1145/1468075.1468121 .

[Ber64] Robert Berger. “The undecidability of the Domino problem”. PhD thesis. Harvard University, 1964
Published as “The undecidability of the Domino problem”. In:Memoirs of the American Mathematical
Society 66 (1966), pages 1–72.

[Cap08] Silvio Capobianco. “Multidimensional cellular automata and generalization of Fekete’s lemma”. In:
Discrete Mathematics & Theoretical Computer Science (DMTCS) 10.3 (2008), pages 95–104.
DOI: 10.46298/dmtcs.442 .

[Cas10] Julien Cassaigne.Odd shift. Unpublished results (see these slides for pointers). 2010 .
[CR73] Stephen A. Cook and Robert A. Reckhow. “Time bounded random access machines”. In: Journal of

Computer and System Sciences 7.4 (1973), pages 354–375.
DOI: 10.1016/S0022-0000(73)80029-7 .

[CS92] Peter F. Corbett and Isaac D. Scherson. “Sorting in Mesh Connected Multiprocessors”. In: IEEE
Transactions on Parallel & Distributed Systems 3.5 (1992), pages 626–632.
DOI: 10.1109/71.159046 .

[Des06] Angela Desai. “Subsystem entropy for ℤ𝑑 sofic shifts”. In: Indagationes Mathematicae 17.3 (2006),
pages 353–359.
DOI: 10.1016/S0019-3577(06)80037-6 .

[Des21] Juline Destombes. “Algorithmic complexity and soficness of shifts in dimension two”. (In French).
PhD thesis. Université de Montpellier, 2021.
arXiv: 2309.12241 [cs.IT].
URL: https://theses.fr/2021MONTS129 .

[DLS08] Bruno Durand, Leonid A. Levin (Леонід́ Анато́лійович Ле́він), and Alexander K. Shen (Александр
Ханиевич Шень). “Complex tilings”. In: The Journal of Symbolic Logic 73.2 (2008), pages 593–613.
DOI: 10.2178/jsl/1208359062 .

[DR22] Julien Destombes and Andrei E. Romashchenko (Андрей Евгеньевич Ромащенко). “Resource-
bounded Kolmogorov complexity provides an obstacle to soficness of multidimensional shifts”. In:
Journal of Computer and System Sciences 128 (2022), pages 107–134.
DOI: 10.1016/j.jcss.2022.04.002 .

156 Draft: June 5, 2025 at 14:45.

https://doi.org/10.1016/C2013-0-10281-4
https://doi.org/10.1109/FSCS.1990.89575
https://doi.org/10.1007/s10440-013-9808-5
https://pcwww.liv.ac.uk/~karpenk/JournalUDT/vol09/no2/02AubrunSablick.pdf
https://doi.org/10.1016/0022-0000(79)90045-X
https://doi.org/10.1145/1468075.1468121
https://doi.org/10.46298/dmtcs.442
https://www.cirm-math.fr/RepOrga/2313/Slides/guillon.pdf
https://doi.org/10.1016/S0022-0000(73)80029-7
https://doi.org/10.1109/71.159046
https://doi.org/10.1016/S0019-3577(06)80037-6
https://arxiv.org/abs/2309.12241
https://theses.fr/2021MONTS129
https://doi.org/10.2178/jsl/1208359062
https://doi.org/10.1016/j.jcss.2022.04.002

[DRS08] Bruno Durand, Andrei E. Romashchenko (Андрей Евгеньевич Ромащенко), and Alexander K. Shen
(Александр Ханиевич Шень). “Fixed point and aperiodic tilings”. In: DLT 2008 (Developments in
Language Theory). Volume 5257. Lecture Notes in Computer Science. 2008, pages 276–288.
DOI: 10.1007/978-3-540-85780-8_22 .

[DRS10] Bruno Durand, Andrei E. Romashchenko (Андрей Евгеньевич Ромащенко), and Alexander K. Shen
(Александр Ханиевич Шень). “Effective closed subshifts in 1D can be implemented in 2D”. In:
Fields of logic and computation. Volume 6300. Lecture Notes in Computer Science. Springer, 2010,
pages 208–226.
DOI: 10.1007/978-3-642-15025-8_12 .

[DRS12] Bruno Durand, Andrei E. Romashchenko (Андрей Евгеньевич Ромащенко), and Alexander K. Shen
(Александр Ханиевич Шень). “Fixed-point tile sets and their applications”. In: Journal of Computer
and System Sciences 78.3 (2012), pages 731–764.
DOI: 10.1016/j.jcss.2011.11.001 .

[ER64] Calvin C. Elgot and Abraham Robinson. “Random-access stored-program machines, an approach
to programming languages”. In: Journal of the Association for Computing Machinery 11.4 (1964),
pages 365–399.
DOI: 10.1145/321239.321240 .

[FP19] Thomas French and Ronnie Pavlov. “Follower, predecessor, and extender entropies”. In:Monatshefte
für Mathematik 188.3 (2019), pages 495–510.
DOI: 10.1007/s00605-018-1224-5 .

[Fre16a] Thomas K. French. “Characterizing follower and extender set sequences”. In: Dynamical Systems 31.3
(2016), pages 293–310.
DOI: 10.1080/14689367.2015.1111865 .

[Fre16b] Thomas K. French. “Follower and extender sets in symbolic dynamics”. PhD thesis. University of
Denver, 2016.
URL: https://digitalcommons.du.edu/etd/1152 .

[Gác01] Péter Gács. “Reliable cellular automata with self-organization”. In: Journal of Statistical Physics 103.1-2
(2001), pages 45–267.
DOI: 10.1023/A:1004823720305 .

[Gác86] Péter Gács. “Reliable computation with cellular automata”. In: Journal of Computer and System Sciences
32.1 (1986), pages 15–78.
DOI: 10.1016/0022-0000(86)90002-4 .

[GJ15] Pierre Guillon and Emmanuel Jeandel. Infinite Communication Complexity. 2015.
arXiv: 1501.05814 [cs.CC] .

[GS23] Léo Gayral and Mathieu Sablik. “Arithmetical hierarchy of the Besicovitch-stability of noisy tilings”.
In: Theory of Computing Systems 67.6 (2023), pages 1209–1240.
DOI: 10.1007/s00224-023-10142-y .

[Har71] Juris Hartmanis. “Computational complexity of random access stored program machines”. In:Mathe-
matical Systems Theory 5 (1971), pages 232–245.
DOI: 10.1007/BF01694180 .

[Har86] David Harel. “Effective transformations on infinite trees, with applications to high undecidability,
dominoes, and fairness”. In: Journal of the Association for ComputingMachinery 33.1 (1986), pages 224–
248.
DOI: 10.1145/4904.4993 .

[Hed69] Gustav A. Hedlund. “Endomorphisms and automorphisms of the shift dynamical system”. In:Mathe-
matical Systems Theory 3 (1969), pages 320–375.
DOI: 10.1007/BF01691062 .

[HM10] Michael Hochman and TomMeyerovitch. “A characterization of the entropies of multidimensional
shifts of finite type”. In: Annals of Mathematics 171.3 (2010), pages 2011–2038.
DOI: 10.4007/annals.2010.171.2011 .

[Hoc09] MichaelHochman.“On the dynamics and recursive properties ofmultidimensional symbolic systems”.
In: Inventiones Mathematicae 176.1 (2009), pages 131–167.
DOI: 10.1007/s00222-008-0161-7 .

Draft: June 5, 2025 at 14:45.

https://doi.org/10.1007/978-3-540-85780-8_22
https://doi.org/10.1007/978-3-642-15025-8_12
https://doi.org/10.1016/j.jcss.2011.11.001
https://doi.org/10.1145/321239.321240
https://doi.org/10.1007/s00605-018-1224-5
https://doi.org/10.1080/14689367.2015.1111865
https://digitalcommons.du.edu/etd/1152
https://doi.org/10.1023/A:1004823720305
https://doi.org/10.1016/0022-0000(86)90002-4
https://arxiv.org/abs/1501.05814
https://doi.org/10.1007/s00224-023-10142-y
https://doi.org/10.1007/BF01694180
https://doi.org/10.1145/4904.4993
https://doi.org/10.1007/BF01691062
https://doi.org/10.4007/annals.2010.171.2011
https://doi.org/10.1007/s00222-008-0161-7

[Hoc10] Michael Hochman. “On the automorphism groups of multidimensional shifts of finite type”. In:
Ergodic Theory and Dynamical Systems 30.3 (2010), pages 809–840.
DOI: 10.1017/S0143385709000248 .

[HS74] Juris Hartmanis and Janos Simon. “On the power of multiplication in random access machines”. In:
SWAT 1974. Cornell University, 1974, pages 13–23.
DOI: 10.1109/SWAT.1974.20 .

[JK12] Timo Jolivet and Jarkko Kari. “Consistency of multidimensional combinatorial substitutions”. In:
Theoretical Computer Science 454 (2012), pages 178–188.
DOI: 10.1016/j.tcs.2012.03.050 .

[JV15] Emmanuel Jeandel and Pascal Vanier. “Characterizations of periods of multi-dimensional shifts”. In:
Ergodic Theory and Dynamical Systems 35.2 (2015), pages 431–460.
DOI: 10.1017/etds.2013.60 .

[Kle38] Stephen Cole Kleene. “On notation for ordinal numbers”. In: Journal of Symbolic Logic 3.4 (1938),
pages 150–155.
DOI: 10.2307/2267778 .

[KM13] Steve Kass and Kathleen Madden. “A sufficient condition for non-soficness of higher-dimensional
subshifts”. In: Proceedings of the American Mathematical Society 141.11 (2013), pages 3803–3816.
DOI: 10.1090/S0002-9939-2013-11646-1 .

[KN97] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press, 1997,
pages xiv+189.
DOI: 10.1017/CBO9780511574948 .

[KR84] David Kirkpatrick and Stefan Reisch. “Upper bounds for sorting integers on random accessmachines”.
In: Theoretical Computer Science 28.3 (1984), pages 263–276.
DOI: 10.1016/0304-3975(83)90023-3 .

[Kůr03] Petr Kůrka. Topological and symbolic dynamics. Volume 11. Cours spécialisés. Société Mathématique de
France, 2003, pages xii+315. ISBN: 2-85629-143-0 .

[Lei92] F. Thomson Leighton. Introduction to parallel algorithms and architectures. Arrays, trees, hypercubes.
Morgan Kaufmann Publishers, 1992, pages xx+831.
DOI: 10.1016/C2013-0-08299-0 .

[LM95] Douglas A. Lind and Brian Marcus. An introduction to symbolic dynamics and coding. Cambridge
University Press, 1995.
DOI: 10.1017/CBO9780511626302 .

[Mel61] Zdzislaw A. Melzak. “An informal arithmetical approach to computability and computation”. In:
Canadian Mathematical Bulletin 4.3 (1961), pages 279–293.
DOI: 10.4153/CMB-1961-031-9 .

[Mey11] TomMeyerovitch. “Growth-type invariants for ℤ𝑑 subshifts of finite type and arithmetical classes of
real numbers”. In: Inventiones Mathematicae 184.3 (2011), pages 567–589.
DOI: 10.1007/s00222-010-0296-1 .

[MH38] Marston H. C. Morse and Gustav A. Hedlund. “Symbolic dynamics”. In: American Journal of Mathe-
matics 60.4 (1938), pages 815–866.
DOI: 10.2307/2371264 .

[Min61] Marvin L. Minsky. “Recursive unsolvability of Post’s problem of “tag” and other topics in theory of
Turing machines”. In: Annals of Mathematics 74.3 (1961), pages 437–455.
DOI: 10.2307/1970290 .

[Mor21] Marston Morse. “Recurrent geodesics on a surface of negative curvature”. In: Transactions of the
American Mathematical Society 22.1 (1921), pages 84–100.
DOI: 10.2307/1988844 .

[Moz89] Shahar Mozes. “Tilings, substitution systems and dynamical systems generated by them”. In: Journal
d’Analyse Mathématique 53 (1989), pages 139–186.
DOI: 10.1007/BF02793412 .

[MP22] Benoît Monin and Ludovic Patey. Calculabilité. Degrés Turing, théorie algorithmique de aléatoire, mathé-
matiques à rebours et hypercalculabilité. Tableau noir. Calvage &Mounet, 2022 .

Draft: June 5, 2025 at 14:45.

https://doi.org/10.1017/S0143385709000248
https://doi.org/10.1109/SWAT.1974.20
https://doi.org/10.1016/j.tcs.2012.03.050
https://doi.org/10.1017/etds.2013.60
https://doi.org/10.2307/2267778
https://doi.org/10.1090/S0002-9939-2013-11646-1
https://doi.org/10.1017/CBO9780511574948
https://doi.org/10.1016/0304-3975(83)90023-3
https://doi.org/10.1016/C2013-0-08299-0
https://doi.org/10.1017/CBO9780511626302
https://doi.org/10.4153/CMB-1961-031-9
https://doi.org/10.1007/s00222-010-0296-1
https://doi.org/10.2307/2371264
https://doi.org/10.2307/1970290
https://doi.org/10.2307/1988844
https://doi.org/10.1007/BF02793412

[NS79] David Nassimi and Sartaj Sahni. “Bitonic sort on a Mesh-Connected Parallel Computer”. In: IEEE
Transactions on Computers 28.1 (1979), pages 2–7.
DOI: 10.1109/TC.1979.1675216 .

[OP16] Nic Ormes and Ronnie Pavlov. “Extender sets and multidimensional subshifts”. In: Ergodic Theory
and Dynamical Systems 36.3 (2016), pages 908–923.
DOI: 10.1017/etds.2014.71 .

[Pav13] Ronnie Pavlov. “A class of nonsofic multidimensional shift spaces”. In: Proceedings of the American
Mathematical Society 141.3 (2013), pages 987–996.
DOI: 10.1090/S0002-9939-2012-11382-6 .

[PV23] Léo Paviet Salomon and Pascal Vanier. “Realizing finitely presented groups as projective fundamental
groups of SFTs”. In:MFCS 2023. Volume 272. Leibniz International Proceedings in Informatics
(LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023, 75:1–75:15.
DOI: 10.4230/LIPIcs.MFCS.2023.75 .

[Pyt02] N. Pythéas Fogg. Substitutions in dynamics, arithmetics and combinatorics. Volume 1794. Lecture Notes
in Mathematics. Springer, 2002, pages xviii+402.
DOI: 10.1007/b13861 .

[QT00] Anthony N. Quas and Paul B. Trow. “Subshifts of multi-dimensional shifts of finite type”. In: Ergodic
Theory and Dynamical Systems 20.3 (2000), pages 859–874.
DOI: 10.1017/S0143385700000468 .

[Ric72] Daniel Richardson. “Tessellations with local transformations”. In: Journal of Computer and System
Sciences 6 (1972), pages 373–388.
DOI: 10.1016/S0022-0000(72)80009-6 .

[Rob71] Raphael M. Robinson. “Undecidability and nonperiodicity for tilings of the plane”. In: Inventiones
Mathematicae 12 (1971), pages 177–209.
DOI: 10.1007/BF01418780 .

[RS59] Michael O. Rabin and Dana S. Scott. “Finite automata and their decision problems”. In: IBM Journal
of Research and Development 3.2 (1959), pages 114–125.
DOI: 10.1147/rd.32.0114 .

[Sch95] Klaus Schmidt. “The cohomology of higher-dimensional shifts of finite type”. In: Pacific Journal of
Mathematics 170.1 (1995), pages 237–269.
DOI: 10.2140/pjm.1995.170.237 .

[Sim15] StephenG. Simpson.“Symbolic dynamics: entropy = dimension = complexity”. In:Theory of Computing
Systems 56.3 (2015), pages 527–543.
DOI: 10.1007/s00224-014-9546-8 .

[Sli78] Anatol O. Slissenko (Анатоль Олесьевич Слисенко). “Методы вычислений, основанные на адрес-
ной организации памяти” [“Models of Computations Based on Address Organization of Storage”].
In: Всесоюзн. симпозиум « Искусств, интеллект и автоматизация исследова ний в матем. » Тезисы до-

кладов и сообщений [Proc. Soviet Symp. on AI and Automation of Research in Mathematics]. Інститут
кібернетики, Киев [Institute of Cybernetics, Kiev], 1978, pages 94–96 .

[Sli79] Anatol O. Slissenko (Анатоль Олесьевич Слисенко). “Сложностные задачи теории вычислений”.
In: Научн. совет по компл. проблеме «Кибернетика». (Preprint), 1979.
DOI: 10.1070/RM1981v036n06ABEH003102
Translated as “Complexity problems in computational theory”. In: Russian Mathematical Surveys 36.6
(1981), pages 23–125.

[Sli81] Anatol O. Slissenko (Анатоль Олесьевич Слисенко). “Поиск периодичностей и идентификация
полслов в реальное время”. In: Теоретические применения методов математической логики. III. Vol-
ume 105. Записки научных семинаров ЛОМИ. Записки научных семинаров, 1981, pages 62–173.
DOI: 10.1007/BF01084395
Translated as “Detection of periodicities and string-matching in real time”. In: Journal of Soviet
Mathematics 22 (1983), pages 1316–1387.

[SSS86] Sandeep Sen, Isaac D. Scherson, and Adi Shamir. “Shear Sort: A True Two-Dimensional Sorting
Techniques for VLSI Networks”. In: ICPP’86 (International Conference on Parallel Processing). 1986,
pages 903–908 .

Draft: June 5, 2025 at 14:45.

https://doi.org/10.1109/TC.1979.1675216
https://doi.org/10.1017/etds.2014.71
https://doi.org/10.1090/S0002-9939-2012-11382-6
https://doi.org/10.4230/LIPIcs.MFCS.2023.75
https://doi.org/10.1007/b13861
https://doi.org/10.1017/S0143385700000468
https://doi.org/10.1016/S0022-0000(72)80009-6
https://doi.org/10.1007/BF01418780
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.2140/pjm.1995.170.237
https://doi.org/10.1007/s00224-014-9546-8
https://doi.org/10.1070/RM1981v036n06ABEH003102
https://doi.org/10.1007/BF01084395

[Ter19] Véronique Terrier. “Communication complexity tools on recognizable picture languages”. In: Theo-
retical Computer Science 795 (2019), pages 194–203.
DOI: 10.1016/j.tcs.2019.05.040 .

[TK77] Clark D. Thompson and Kung Hsiang-Tsung (孔祥重). “Sorting on a Mesh-Connected Parallel
Computer”. In: Communications of the ACM (Association for Computing Machinery) 20.4 (1977),
pages 263–271.
DOI: 10.1145/359461.359481 .

[Tör21] Ilkka Törmä. “Fixed point constructions in tilings and cellular automata”. In: AUTOMATA 2021
(International Workshop on Cellular Automata and Discrete Complex Systems). Volume 90. Open Access
Series in Informatics (OASIcs). Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2021, 4:1–4:13.
DOI: 10.4230/oasics.automata.2021.4 .

[Wan57] Wang Hao (王浩). “A variant to Turing’s theory of computing machines”. In: Journal of the Association
for Computing Machinery 4 (1957), pages 61–92.
DOI: 10.1145/320856.320867 .

[Wan61] Wang Hao (王浩). “Proving theorems by pattern recognition – II”. In: Bell System Technical Journal
40.1 (1961), pages 1–41.
DOI: 10.1002/j.1538-7305.1961.tb03975.x .

[Wei73] Benjamin Weiss. “Subshifts of finite type and sofic systems”. In: Monatshefte für Mathematik 77
(1973), pages 462–474.
DOI: 10.1007/BF01295322 .

[Wes17] Linda B. Westrick. “Seas of squares with sizes from a Π0
1 set”. In: Israel Journal of Mathematics 222.1

(2017), pages 431–462.
DOI: 10.1007/s11856-017-1596-6 .

[Wie83] Jiří Wiedermann. “Deterministic and Nondeterministic Simulation of the RAM by the Turing
Machine”. In: IFIP 9th World Computer Congress. 1983, pages 163–168 .

[Zin15] Charalampos Zinoviadis. “Hierarchy and expansiveness in 2D subshifts of finite type”. In: LATA
2015. Volume 8977. Lecture Notes in Computer Science. Springer, 2015, pages 365–377.
DOI: 10.1007/978-3-319-15579-1_28 .

[ZW01] Zheng Xizhong (郑锡忠) and Klaus Weihrauch. “The arithmetical hierarchy of real numbers”. In:
Mathematical Logic Quarterly 47.1 (2001), pages 51–65.
DOI: 10.1002/1521-3870(200101)47:1<51::AID-MALQ51>3.0.CO;2-W .

Draft: June 5, 2025 at 14:45.

https://doi.org/10.1016/j.tcs.2019.05.040
https://doi.org/10.1145/359461.359481
https://doi.org/10.4230/oasics.automata.2021.4
https://doi.org/10.1145/320856.320867
https://doi.org/10.1002/j.1538-7305.1961.tb03975.x
https://doi.org/10.1007/BF01295322
https://doi.org/10.1007/s11856-017-1596-6
https://doi.org/10.1007/978-3-319-15579-1_28
https://doi.org/10.1002/1521-3870(200101)47:1<51::AID-MALQ51>3.0.CO;2-W

Soficity of multidimensional subshifts

Keywords: tilings, sofic subshifts, symbolic dynamics, computability

Résumé (FR) En dynamique symbolique, un sous-shift multidimensionnel est un language formel𝑋 ⊆ Aℤ𝑑

de coloriages infinis de l’espace discret ℤ𝑑 défini en termes de motifs interdits. Comme les langages de mots
finis, pour lesquels ont été définies des classes de complexité (qui incluent classiquement les langages locaux,
rationnels, algébriques ou calculablement énumérables…) en fonction de l’expressivité des différentes machines
qui les reconnaissent (respectivement : les automates locaux, les automates finis, les automates à piles et les
machines de Turing), les sous-shifts ont été classifiés en sous-shifts de types finis (définis par des familles finies
de motifs interdits), sous-shifts effectifs (définis par des familles calculablement énumérables) et sous-shifts
sofiques : ces derniers forment une classe intermédiaire entre les deux précédentes, et sont définis comme les
images morphiques des sous-shifts de types finis par des automates cellulaires.
Nous nous intéressons à la question suivante : quand un sous-shift donné𝑋 ⊆ Aℤ𝑑 est-il sofique ? Autrement

dit, comment prouve-t-on (ou réfute-t-on) la soficité d’un sous-shift ? Si cette question est résolue en dimension 1
(les sous-shifts sofiques sur ℤ étant similaires aux langages rationnels, le théorème de Myhill-Nerode caractérise
la soficité en dimension 1 par comptage du nombre de « contextes »), décrire la frontière entre les sous-shifts
multidimensionnels sofiques et effectifs reste un problème ouvert en dynamique symbolique.
Cette thèse se divise en deux parties indépendantes, précédées de chapitres préliminaires d’introduction et

de définitions des notions étudiées (de dynamique symbolique, calculabilité…). Dans la première partie, nous
étudions les ensembles d’extensions des sous-shifts sur ℤ𝑑 (qui, informellement, comptent les classes de motifs
qui peuvent être librement échangés dans les configurations d’un sous-shift) selon leur (in)calculabilité : en
particulier, nous prouvons que les entropies d’extensions des sous-shifts (i.e. le taux de croissance du nombre
d’ensemble d’extensions) peuvent être entièrement caractérisées calculablement dans la hiérarchie arithmétique
des nombres réels, le niveau précis dépendant de la complexité et des propriétés dynamiques vérifiées par le
sous-shift considéré.Dans la seconde partie, nous prouvons une condition suffisante pour la soficité des sous-shifts
multidimensionnels s’appuyant sur une quantification de « l’information utile » contenue dans les motifs : plus
précisément, nous introduisons une notion de représentation inductive (qui, informellement, décrit l’information
échangée par des motifs adjacents d’une taille donnée pour vérifier la validité locale d’une configuration), et nous
prouvons qu’admettre des représentations calculables de petites complexité est une condition suffisante pour la
soficité d’un sous-shift. Enfin, nous présentons ces résultats comme une complexité de communication sur des
coloriages infinis, et argumentons que la complexité de communication non-déterministe forme un cadre riche
pour l’étude de la soficité des sous-shifts multidimensionnels.

Abstract (EN) In symbolic dynamics, a multidimensional subshift is a formal language𝑋 ⊆ Aℤ𝑑 of infinite
colorings of the discrete space ℤ𝑑 defined in terms of forbidden patterns. As languages of finite words have been
classified into several complexity classes (which, classically, include the local regular, context-free, and computably
enumerable languages…) depending on the expressiveness of the various devices used for their descriptions
(respectively: local automata, finite automata, pushdown automata, Turing machines…), subshifts have been
classified into subshifts of finite type (definied by finite families of forbidden patterns), effective subshifts (defined
by computably enumerable families of forbidden patterns) and the sofic subshifts: the latter form an intermediary
class, and are defined as the morphic images of subshifts of finite type by cellular automata.
We are interested in the following question: when is a given subshift𝑋 ⊆ Aℤ𝑑 actually sofic? In other words, how

does one prove or disprove the soficity of a subshift? While this question is entirely solved in the one-dimensional
setting (as ℤ sofic subshifts are very similar to regular languages of finite words, the Myhill-Nerode theorem
characterizes one-dimensional soficity by counting the number of possible “contexts”), describing the frontier
between sofic and effective multidimensional subshifts is still an open problem in symbolic dynamics.
This thesis is divided in two independent parts, with preliminary chapters of introduction and definitions of the

relevant notions being considered (from symbolic dynamics, computability theory…). In the first part, we study
the extender sets of ℤ𝑑 subshifts (which, informally, count the classes of patterns that can be freely exchanged in
the configurations of a subshift) using computability theory: in particular, we prove that extender entropies of ℤ𝑑

subshifts (i.e. the growth rate of the number of extender sets) can be fully characterized computationally in the
arithmetical hierarchy of real numbers, the precise level depending on the complexity and the dynamical properties
verified by the considered subshifts. In the second part, we prove a sufficient condition for multidimensional
soficity based on a quantification of the “useful information” contained in patterns: more precisely, we introduce
a notion of inductive representations (which, informally, describe the information exchanged between adjacent
patterns of a given size to check the local validity of a configuration), and prove that admitting computable
representations of small complexity is a sufficient condition for soficity. Finally, we describe these results as a
variant of communication complexity on infinite colorings, and argue that non-deterministic communication
complexity is a fruitful context of the study of multidimensional soficity.

Draft: June 5, 2025 at 14:45.

	Acknowledgements
	Table of contents
	Introduction
	Gentle definitions
	Notations and conventions
	General mathematics
	Multivariate analysis

	Symbolic dynamics
	Subshifts
	Topology
	Morphisms
	Classes of subshifts
	Dynamics

	Computability
	Basic definitions
	Arithmetical hierarchy
	The RAM model

	Tools
	Toeplitz subshifts

	Context: soficity of subshifts
	Introduction
	Soficity of Z subshifts
	Syntactic monoid in formal languages
	Definitions
	Extender sets and soficity of Z subshifts

	Soficity of multidimensional subshifts
	A rich class of subshifts
	Proving soficity
	Disproving soficity

	Multidimensional extender sets
	Summary
	Extender sets of multidimensional subshifts
	Extender sets
	Extender sets in example subshifts
	Properties of extender sets
	Extender entropy
	Examples
	Properties of extender entropies

	Characterizations of extender entropies
	Subshifts of finite type
	Effective subshifts
	Sofic subshifts
	Computable subshifts
	Minimal subshifts
	Mixing subshifts

	Soficity and small representations
	Summary
	Soficity and inductive representations
	Recursive representations
	Examples
	Necessary and sufficient conditions for soficity

	Mesh-Connected MultiComputers
	Mesh-Connected MultiComputers and algorithms
	Simulating RAM programs with MCMCs
	Space-time diagrams of MCMCs

	The expanding simulation framework
	Tilesets
	Simulation
	Overview of the construction
	Building expanding simulating tilesets

	Proof of Theorem 10.11
	Overview of the construction
	Distributed computations and subarray computation layers
	Implementation of inductive representations in macro-tiles
	Final considerations and fixpoint theorem
	Resulting tileset

	Applications of Theorem 10.11
	Right-computable densities
	Seas of squares
	Lifts

	Perspectives: soficity and communication complexity
	Communication complexity
	Communication complexity in Z subshifts
	Communication complexity of multidimensional subshifts
	Example: the problem n1
	N1 as picture languages
	N1 as subshifts

	Bibliography
	Personal bibliography
	General bibliography

