Descriptive complexity on represented spaces

Antonin CALLARD (Joint work with Mathieu Hoyrup)

ENS Paris-Saclay (France)

ASL North American Meeting 2021, June 23rd

Descriptive Set Theory (DST): study the complexity of sets.

Descriptive Set Theory (DST): study the complexity of sets.

► Mathematics: on Polish spaces (separable and completely metrizable)

Descriptive Set Theory (DST): study the complexity of sets.

- ► Mathematics: on Polish spaces (separable and completely metrizable)
- Computer Science uses other spaces:
 - higher-order functionals;
 - Complete Partial Orders;

▶ ...

Descriptive Set Theory (DST): study the complexity of sets.

- ► Mathematics: on Polish spaces (separable and completely metrizable)
- Computer Science uses other spaces:
 - higher-order functionals;
 - Complete Partial Orders;
 - ▶ ...
- Development of Descriptive Set Theory on other spaces:
 - properties of representations [Brattka, 2002 & 2004];
 - ω -continuous domains [Selivanov, 2006];
 - quasi-Polish spaces [de Brecht, 2013];
 - ▶ represented spaces [de Brecht, Pauly, 2015 ; de Brecht, Schröder, Selivanov, 2016].

Represented spaces

Definition 1Represented spaceA represented space is a pair (X, δ) :> X is a topological space;> $\delta :\subseteq \mathbb{N}^{\mathbb{N}} \mapsto X$ is a representation (admissible and continuous surjective map).Any $p \in \mathbb{N}^{\mathbb{N}}$ with $\delta(p) = x$ is a name of $x \in X$.

Represented spaces

Definition 1 Represented space
A represented space is a pair (X, δ):
X is a topological space;
δ :⊆ N^N → X is a representation (admissible and continuous surjective map).
Any p ∈ N^N with δ(p) = x is a name of x ∈ X.

Represented spaces

Definition 1 Represented space A represented space is a pair (X, δ) : $\blacktriangleright X$ is a topological space; $\blacktriangleright \delta :\subseteq \mathbb{N}^{\mathbb{N}} \mapsto X$ is a representation (admissible and continuous surjective map). Any $p \in \mathbb{N}^{\mathbb{N}}$ with $\delta(p) = x$ is a name of $x \in X$.

QUESTION:

How to develop Descriptive Set Theory on represented spaces?

$$A = \left\{\frac{1}{n} : n \in \mathbb{N}\right\} \subseteq \mathbb{R}$$

$$A = \left\{\frac{1}{n} : n \in \mathbb{N}\right\} \subseteq \mathbb{R}$$

$$A = \left\{\frac{1}{n} : n \in \mathbb{N}\right\} \subseteq \mathbb{R}$$

$$A = \left\{\frac{1}{n} : n \in \mathbb{N}\right\} \subseteq \mathbb{R}$$

$$A = \left\{\frac{1}{n} : n \in \mathbb{N}\right\} \subseteq \mathbb{R}$$

$$A = \left\{\frac{1}{n} : n \in \mathbb{N}\right\} \subseteq \mathbb{R}$$

$$A = \left\{\frac{1}{n} : n \in \mathbb{N}\right\} \subseteq \mathbb{R}$$

$$A = \left\{\frac{1}{n} : n \in \mathbb{N}\right\} \subseteq \mathbb{R}$$

$$A = \left\{\frac{1}{n} : n \in \mathbb{N}\right\} \subseteq \mathbb{R}$$

Symbolic descriptions and topological descriptions are equivalent on \mathbb{R} : for any $A \subseteq \mathbb{R}$,

```
A is decidable with \leq 2 \text{ mind-changes} (False \rightarrow \text{True} \rightarrow \text{False})
```

 \boldsymbol{A} is a difference of two effective open sets

Symbolic descriptions and topological descriptions are equivalent on \mathbb{R} : for any $A \subseteq \mathbb{R}$,

```
\begin{array}{l} A \text{ is decidable with } \leq 2 \text{ mind-changes (False} \rightarrow \mathsf{True} \rightarrow \mathsf{False}) \\ & \longleftrightarrow \\ \delta^{-1}(A) \text{ is a difference of two effective open sets} \\ & \longleftrightarrow \\ A \text{ is a difference of two effective open sets} \end{array}
```

Symbolic descriptions and topological descriptions are equivalent on \mathbb{R} : for any $A \subseteq \mathbb{R}$,

 $\begin{array}{l} A \text{ is decidable with } \leq 2 \mbox{ mind-changes (False } \rightarrow \mbox{ True } \rightarrow \mbox{ False)} \\ & \longleftrightarrow \\ \delta^{-1}(A) \mbox{ is a difference of two effective open sets} \\ & \longleftrightarrow \\ A \mbox{ is a difference of two effective open sets} \end{array}$

QUESTION:

In which spaces/for which classes of complexity is this true?

Formalization of the problem

Δ_1^0

Borel Hierarchy

Borel Hierarchy

Borel Hierarchy

Borel Hierarchy

Borel Hierarchy

Borel Hierarchy

Borel Hierarchy

- On a represented space (X, δ) ;
- For a complexity class Γ ($\Gamma = D_2, D_\omega, \Pi_2^0, ...$);

- On a represented space (X, δ) ;
- For a complexity class Γ ($\Gamma = D_2, D_{\omega}, \Pi_2^0, ...$);

- On a represented space (X, δ) ;
- For a complexity class Γ ($\Gamma = D_2, D_\omega, \Pi_2^0, ...$);

- $A \in [\Sigma_1^0]$ iff deciding $x \in A$ is recursively enumerable (one "mind change");
- ▶ $A \in [D_2]$ iff deciding $x \in A$ requires at most two "mind changes";
- ▶ In general: bound on the number of "mind changes" \iff bound on the differences of open sets.

Symbolic and topological complexity

- Topological implies symbolic complexity: $\Gamma \subseteq [\Gamma]$ by continuity of δ ;
- Equivalence for semi-decidable/open sets: $\Sigma_1^0 = [\Sigma_1^0]$ by admissibility of δ ;

Symbolic and topological complexity

- Topological implies symbolic complexity: $\Gamma \subseteq [\Gamma]$ by continuity of δ ;
- Equivalence for semi-decidable/open sets: $\Sigma_1^0 = [\Sigma_1^0]$ by admissibility of δ ;

 $\label{eq:QUESTION:} \end{tabular}$ For which classes Γ/spaces do we have $\Gamma = [\Gamma]$?

In this talk:

- A class of spaces with $\Gamma = [\Gamma]$: countably-based spaces;
- Examples of spaces with $\Gamma \neq [\Gamma]$: some coPolish spaces, spaces of open sets, etc...

Case 1: countably-based spaces

Countably-based spaces

Indeed, for $\varphi: S \subseteq \mathbb{N}^{\mathbb{N}} \mapsto \{x \in X: S \cap \delta^{-1}(x) \text{ is non-meager in } \delta^{-1}(x)\}$ [Saint Raymond, 2007]

$$S \in \Sigma^{\mathbf{0}}_{\boldsymbol{\alpha}}(\operatorname{dom}(\delta)) \implies \varphi(S) \in \Sigma^{\mathbf{0}}_{\boldsymbol{\alpha}}(X)$$

Indeed, for $\varphi: S \subseteq \mathbb{N}^{\mathbb{N}} \mapsto \{x \in X: S \cap \delta^{-1}(x) \text{ is non-meager in } \delta^{-1}(x)\}$ [Saint Raymond, 2007]

$$S \in \Sigma^{\mathbf{0}}_{\boldsymbol{\alpha}}(\operatorname{dom}(\delta)) \implies \varphi(S) \in \Sigma^{\mathbf{0}}_{\boldsymbol{\alpha}}(X)$$

Indeed, for $\varphi: S \subseteq \mathbb{N}^{\mathbb{N}} \mapsto \{x \in X: S \cap \delta^{-1}(x) \text{ is non-meager in } \delta^{-1}(x)\}$ [Saint Raymond, 2007]

$$S \in \Sigma^{\mathbf{0}}_{\alpha}(\operatorname{dom}(\delta)) \implies \varphi(S) \in \Sigma^{\mathbf{0}}_{\alpha}(X)$$

$[\Sigma^0_{lpha}]$	=	Σ^0_lpha
$[oldsymbol{\Delta}_2^0]$	_	Δ^0_2
$[D_{lpha}]$	=	D_{lpha}
$[D_2]$	=	D_2
$[\mathbf{\Sigma}_1^0]$	=	Σ_1^0

On countably-based spaces

Case 2: real polynomials

Space of real polynomials

Consider $\mathbb{R}[X] = \bigcup_{n \in \mathbb{N}} \mathbb{R}_n[X]$ equipped with the coPolish topology:

 $O \subseteq \mathbb{R}[X]$ is open if: $\forall n, O$ is open in $\mathbb{R}_n[X]$

Space of real polynomials

Consider $\mathbb{R}[X] = \bigcup_{n \in \mathbb{N}} \mathbb{R}_n[X]$ equipped with the coPolish topology:

 $O \subseteq \mathbb{R}[X]$ is open if: $\forall n, O$ is open in $\mathbb{R}_n[X]$

(Admissible) representation of a polynomial $P \in \mathbb{R}[X]$:

- ▶ Some bound on the degree $n \ge \deg(P)$;
- ▶ The coefficients $(p_0, ..., p_n)$ such that $P = p_0 + p_1 X + ... + p_n X^n$;

Polynomials: complexity of A

$$A = \left\{ P \in \mathbb{R}[X] : p_0 = 0 \text{ or } p_0 > \frac{1}{\deg(P)} \right\}$$

Proof:

Polynomials: complexity of A

$$A = \left\{ P \in \mathbb{R}[X] : p_0 = 0 \text{ or } p_0 > \frac{1}{\deg(P)} \right\}$$

Proof:

$$\frac{1}{m} + \frac{X^{m+1}}{p} (\in A) \xrightarrow[p \to +\infty]{} \frac{1}{m} (\notin A) \xrightarrow[m \to +\infty]{} 0 (\in A)$$

Complexity of B

$$B = \left\{ \frac{1}{k_1} + \frac{X^{k_1}}{k_2} + \frac{X^{k_2}}{k_3} + \dots + \frac{X^{k_{n-2}}}{k_{n-1}} + \frac{X^{k_{n-1}}}{k_n} : k_1 < k_2 < \dots < k_n \text{ and } n \text{ even} \right\}$$
Lemma 7
Complexity of B
 $B \in [D_2];$
 $B \in \Delta_2^0$ and not below.

Complexity on the space of real polynomials

 $\mathsf{On}\ \mathbb{R}[X]$

Topology vs. sequentiality

Why is there a difference between topological and symbolic complexity?

Topology vs. sequentiality

Why is there a difference between topological and symbolic complexity?

PARTIAL EXPLANATION:

The difference is related to the mismatch between **topological** and **sequential** aspects of the space.

continuity sequential continuity compactness sequential compactness closure sequential closure

Topology vs. sequentiality

Why is there a difference between topological and symbolic complexity?

Case 3: spaces of open sets

Spaces of open sets

The category of admissibly represented spaces is cartesian closed. In particular, if X is admissibly represented, then $\mathcal{O}(X)$ (equipped with Scott topology) is too [Schröder, 2015].

Spaces of open sets

The category of admissibly represented spaces is cartesian closed. In particular, if X is admissibly represented, then $\mathcal{O}(X)$ (equipped with Scott topology) is too [Schröder, 2015].

Open sets of Polish spaces

What about higher complexities?

Open sets of Polish spaces

What about higher complexities? [Hoyrup, 2020] Let $X_{nk} = \{x \in X : x \text{ has no compact neighborhood}\}.$

16/22

Partial conclusion

Countably-based \blacktriangleright $[\Gamma] = \Gamma;$ spaces

 $\mathbb{R}[X]$

- there exists some $A \in [D_2]$ with A not below Δ_2^0 ;
- for every α , $[\Sigma^{\mathbf{0}}_{\alpha}] = \Sigma^{\mathbf{0}}_{\alpha}$;
- ▶ $[D_n] = D_n$ for $n \in \mathbb{N}$: well-behaved low complexity;

 $\mathcal{O}(X)$

- \blacktriangleright In some cases, $[\Sigma^0_\alpha]$ and Σ^0_α disagree at low levels, then agree;
- In some others, they never agree.

Partial conclusion

Countably-based \blacktriangleright $[\Gamma] = \Gamma;$ spaces

 $\mathbb{R}[X]$

• there exists some $A \in [D_2]$ with A not below Δ_2^0 ;

• for every
$$\alpha$$
, $[\Sigma^{\mathbf{0}}_{\alpha}] = \Sigma^{\mathbf{0}}_{\alpha}$;

▶ $[D_n] = D_n$ for $n \in \mathbb{N}$: well-behaved low complexity;

 $\mathcal{O}(X)$

- \blacktriangleright In some cases, $[\Sigma^0_\alpha]$ and Σ^0_α disagree at low levels, then agree;
- In some others, they never agree.

PARTIAL EXPLANATION (AGAIN):

The difference is related to the mismatch between **topological** and **sequential** aspects of the space.

Hardness

How can we show that a set A is **not** in Σ_2^0 ?

 \rightarrow **Reductions**: you prove that A is "harder than" any $\Pi_2^0 = \check{\Sigma}_2^0$ set of $\mathbb{N}^{\mathbb{N}}$.

How can we show that a set A is **not** in Σ_2^0 ?

 \rightarrow **Reductions**: you prove that A is "harder than" any $\Pi_2^0 = \Sigma_2^0$ set of $\mathbb{N}^{\mathbb{N}}$.

 Δ_2^0

...

Hardness captures symbolic complexity:

Hardness captures symbolic complexity:

To capture topological complexity, weakened version of hardness:

Hardness captures symbolic complexity:

To capture topological complexity, weakened version of hardness:

 Δ_2^0

...

Conclusion

QUESTION:

For which classes Γ /spaces do we have $\Gamma = [\Gamma]$?

Conclusion

QUESTION:

```
For which classes \Gamma/spaces do we have \Gamma = [\Gamma]?
```

ANSWER:

- ▶ $\Gamma = [\Gamma]$ on countably-based spaces;
- ► They differ in general.

PARTIAL EXPLANATION:

The difference is related to the mismatch between **topological** and **sequential** aspects of the topology.

▶ Weaker notion of hardness to capture topological instead of symbolic complexity.

Thank you

Questions?