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Descriptive Set Theory

Descriptive Set Theory (DST): study the complexity of sets.

I Mathematics: on Polish spaces (separable and completely metrizable)

I Computer Science uses other spaces:
I higher-order functionals;
I Complete Partial Orders;
I ...

I Development of Descriptive Set Theory on other spaces:
I properties of representations [Brattka, 2002 & 2004];
I ω-continuous domains [Selivanov, 2006];
I quasi-Polish spaces [de Brecht, 2013];
I represented spaces [de Brecht, Pauly, 2015 ; de Brecht, Schröder, Selivanov, 2016].
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Represented spaces

Definition 1 Represented space

A represented space is a pair (X , δ):
I X is a topological space;
I δ :⊆ NN 7→ X is a representation (admissible and continuous surjective map).

Any p ∈ NN with δ(p) = x is a name of x ∈ X .

X

NN

δ

NN
f

∃F

Question:
How to develop Descriptive Set Theory on represented spaces?
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A motivating example

A =

{
1
n

: n ∈ N
}

⊆ R

Two competing notions of complexity:

Symbolic: Deciding membership in A of an element x ∈ R (with a name).

False True False

∃n, 1
n+1 < x < 1

n−1 x 6= 1
n

Topological:
A = (0,+∞) \

⋃
n∈N∗

(
1

n + 1
,

1
n

)
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A motivating example
Symbolic descriptions and topological descriptions are equivalent on R: for any A ⊆ R,

A is decidable with ≤ 2 mind-changes (False → True → False)

⇐⇒

⇐⇒

⇐⇒

A is a difference of two effective open sets

Question:
In which spaces/for which classes of complexity is this true?
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Formalization of the problem



Topological complexity

∆0
1

Σ0
1 Π0

1

∆0
2

Σ0
2 Π0

2

∆0
3

Σ0
3 Π0

3

...

Borel Hierarchy

Difference Hierarchy

∆0
1

D1 = Σ0
1 Ď1 = Π0

1

D2 Ď2

D2 ∩ Ď2

D3 ∩ Ď3

D3 Ď3

...

∆0
2

⊆
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Symbolic complexity

I On a represented space (X , δ);
I For a complexity class Γ (Γ = D2,Dω,Π

0
2, ...);

Definition 2 Symbolic complexity

Any A ⊆ X has symbolic complexity Γ if

δ−1(A) ∈ Γ.

We denote A ∈ [Γ].

Complexity of deciding membership in A with a relativized algorithm!

I A ∈ [Σ0
1] iff deciding x ∈ A is recursively enumerable (one “mind change”);

I A ∈ [D2] iff deciding x ∈ A requires at most two “mind changes”;
I In general: bound on the number of “mind changes” ⇐⇒ bound on the differences of open sets.
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Symbolic and topological complexity

I Topological implies symbolic complexity: Γ ⊆ [Γ] by continuity of δ;
I Equivalence for semi-decidable/open sets: Σ0

1 = [Σ0
1] by admissibility of δ;

Question:
For which classes Γ/spaces do we have Γ = [Γ]?

In this talk:
I A class of spaces with Γ = [Γ]: countably-based spaces;
I Examples of spaces with Γ 6= [Γ]: some coPolish spaces, spaces of open sets, etc…
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Case 1: countably-based spaces



Countably-based spaces

Theorem 3 [De Brecht, 2013],

[C.,Hoyrup, 2020]

If X is countably-based, then Γ = [Γ].

in a uniform way.

Indeed, for ϕ : S ⊆ NN 7→ {x ∈ X : S ∩ δ−1(x) is non-meager in δ−1(x)} [Saint Raymond, 2007]

S ∈ Σ0
α(dom(δ)) =⇒ ϕ(S) ∈ Σ0

α(X)

Theorem 4 [C.,Hoyrup, 2020]

The following are equivalent:
I X is countably-based;
I [D2] = D2 in a uniform way.
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Countably-based spaces

[Σ0
1]

[D2]

[Dα]

[∆0
2]

[Σ0
α]

Σ0
1

D2

Dα

∆0
2

Σ0
α

=

=

=

=

=

On countably-based spaces
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Case 2: real polynomials



Space of real polynomials

Consider R[X ] =
⋃

n∈N Rn[X ] equipped with the coPolish topology:

O ⊆ R[X ] is open if: ∀n,O is open in Rn[X ]

(Admissible) representation of a polynomial P ∈ R[X ]:
I Some bound on the degree n ≥ deg(P);
I The coefficients (p0, ..., pn) such that P = p0 + p1X + ...+ pnXn;
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Polynomials: complexity of A

A =

{
P ∈ R[X ] : p0 = 0 or p0 >

1
deg(P)

}

Lemma 5 Complexity of A (Symbolic)

A ∈ [D2]

Lemma 6 Complexity of A (Topological)

A /∈ D2

Proof:

True

False

False

True

p0 < 1
n

p0 > 0

p0 > 0

p0 > 1
deg P

Proof:
1
m

+
Xm+1

p
(∈ A) −−−−−→

p→+∞

1
m

(/∈ A) −−−−−→
m→+∞

0 (∈ A)
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Complexity of B

B =

{
1
k1

+
Xk1

k2
+

Xk2

k3
+ · · ·+ Xkn−2

kn−1
+

Xkn−1

kn
: k1 < k2 < · · · < kn and n even

}

Lemma 7 Complexity of B

I B ∈ [D2];
I B ∈ ∆0

2 and not below.
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Complexity on the space of real polynomials

On R[X ]

[Σ0
1] Σ0

1

[D2] D2

[∆0
2] ∆0

2

[Σ0
2] Σ0

2

=

… …

=

=
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Topology vs. sequentiality
Why is there a difference between topological and symbolic complexity?

Partial explanation:
The difference is related to the mismatch between
topological and sequential aspects of the space.

continuity sequential continuity
compactness sequential compactness
closure sequential closure

Indeed:

Theorem 8 [C.,Hoyrup, 2020]

For X a coPolish space, the following are equivalent:
I Closure and sequential closure coincide on X (Fréchet-Urysohn);
I For every n ∈ N, [Dn] = Dn.
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Case 3: spaces of open sets



Spaces of open sets

The category of admissibly represented spaces is cartesian closed. In particular, if X is admissibly
represented, then O(X) (equipped with Scott topology) is too [Schröder, 2015].

Theorem 9 [Hoyrup, 2020]

For X a represented space, on O(X),

∀n ∈ N, Dn = [Dn]

(Non-effective proof) [Σ0
1] Σ0

1

[D2] D2

[Dω] Dω

=

=

…
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Open sets of Polish spaces
What about higher complexities?

[Hoyrup, 2020]
Let Xnk = {x ∈ X : x has no compact neighborhood}.

[Σ0
1] Σ0

1

[Dα] Dα

[∆0
2] ∆0

2

[Σ0
α] Σ0

α

=

=

=

=

Class I : Xnk = ∅

[Σ0
1] Σ0

1

[Dn] Dn

[Dω] Dω

[∆0
3] ∆0

3

[Σ0
α] Σ0

α

=

=

=

=

Class II: Xnk finite

[Σ0
1] Σ0

1

[Dn] Dn

[Σ0
2] Σ0

2

[Σ0
3] Σ0

3

… Σ0
4

=

=

Class III: σ-compact

[Σ0
1] Σ0

1

[Dn] Dn

[Σ0
2] Σ0

2

Borel

=

=

Class IV: not σ-compact
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Partial conclusion

Countably-based
spaces

I [Γ] = Γ;

R[X ]
I there exists some A ∈ [D2] with A not below ∆0

2;
I for every α, [Σ0

α] = Σ0
α;

O(X)

I [Dn] = Dn for n ∈ N: well-behaved low complexity;
I In some cases, [Σ0

α] and Σ0
α disagree at low levels, then agree;

I In some others, they never agree.

Partial explanation (again):
The difference is related to the mismatch between
topological and sequential aspects of the space.
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Hardness



Hardness in Polish spaces

How can we show that a set A is not in Σ0
2?

→ Reductions: you prove that A is “harder than” any Π0
2 = Σ̌0

2 set of NN.

Definition 10 Wadge reducibility

I For A ⊆ X and B ⊆ Y , A is Wadge reducible to B (written A ≤W B) if:

∃f : X 7→ Y , x ∈ A ⇐⇒ f (x) ∈ B

I A ⊆ X is Γ-hard if:
∀C ∈ Γ

(
NN) ,C ≤W A
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Hardness in Polish spaces

Lemma 11 Wadge Lemma

For any Borel subset A of a Polish space,

A /∈ Γ ⇐⇒ A is Γ̌-hard

∆0
1

Σ0
1 Π0

1

D2 Ď2

D3 Ď3

…

∆0
2

Not true (in general) outside of Polish spaces!
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Hardness on represented spaces
Hardness captures symbolic complexity:

Theorem 12

C.,Hoyrup, 2020

For X a represented space, and A ⊆ X Borel,

A /∈ [Γ] ⇐⇒ A is Γ̌-hard

A /∈ Γ ⇐⇒ A is Γ̌-hard*

To capture topological complexity, weakened version of hardness:

Definition 13 [Hoyrup, 2020]

A ⊆ X is Γ-hard* if
for every countably-based weaker topology τ ,

A is Γ-hard in (X , τ).
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Hardness on represented spaces
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Conclusion

Question:
For which classes Γ/spaces do we have Γ = [Γ]?

Answer:
I Γ = [Γ] on countably-based spaces;
I They differ in general.

Partial explanation:
The difference is related to the mismatch between
topological and sequential aspects of the topology.

I Weaker notion of hardness to capture topological instead of symbolic complexity.
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Thank you

Questions?
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