Descriptive complexity on represented spaces

Antonin Callard
(Joint work with Mathieu Hoyrup)

ASL North American Meeting 2021, June $23^{\text {rd }}$

Descriptive Set Theory

Descriptive Set Theory (DST): study the complexity of sets.

Descriptive Set Theory

Descriptive Set Theory (DST): study the complexity of sets.

- Mathematics: on Polish spaces (separable and completely metrizable)

Descriptive Set Theory

Descriptive Set Theory (DST): study the complexity of sets.

- Mathematics: on Polish spaces (separable and completely metrizable)
- Computer Science uses other spaces:
- higher-order functionals;
- Complete Partial Orders;
- ...

Descriptive Set Theory

Descriptive Set Theory (DST): study the complexity of sets.

- Mathematics: on Polish spaces (separable and completely metrizable)
- Computer Science uses other spaces:
- higher-order functionals;
- Complete Partial Orders;
- ...
- Development of Descriptive Set Theory on other spaces:
- properties of representations [Brattka, 2002 \& 2004];
- ω-continuous domains [Selivanov, 2006];
- quasi-Polish spaces [de Brecht, 2013];
- represented spaces [de Brecht, Pauly, 2015 ; de Brecht, Schröder, Selivanov, 2016].

Represented spaces

Definition 1
A represented space is a pair (X, δ) :
Represented space
X is a topological space;
Any $p \in \mathbb{N}^{\mathbb{N}} \mapsto X$ is a representation (admissible and continuous surjective map).

Represented spaces

Definition 1

Represented space
A represented space is a pair (X, δ) :

- X is a topological space;
- $\delta: \subseteq \mathbb{N}^{\mathbb{N}} \mapsto X$ is a representation (admissible and continuous surjective map).

Any $p \in \mathbb{N}^{\mathbb{N}}$ with $\delta(p)=x$ is a name of $x \in X$.

Represented spaces

Definition 1

Represented space
A represented space is a pair (X, δ) :

- X is a topological space;
- $\delta: \subseteq \mathbb{N}^{\mathbb{N}} \mapsto X$ is a representation (admissible and continuous surjective map).

Any $p \in \mathbb{N}^{\mathbb{N}}$ with $\delta(p)=x$ is a name of $x \in X$.

Question:

How to develop Descriptive Set Theory on represented spaces?

A motivating example

$$
A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \subseteq \mathbb{R}
$$

Two competing notions of complexity:

A motivating example

$$
A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \subseteq \mathbb{R}
$$

Two competing notions of complexity:
Symbolic: Deciding membership in A of an element $x \in \mathbb{R}$ (with a name).

A motivating example

$$
A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \subseteq \mathbb{R}
$$

Two competing notions of complexity:
Symbolic: Deciding membership in A of an element $x \in \mathbb{R}$ (with a name).

A motivating example

$$
A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \subseteq \mathbb{R}
$$

Two competing notions of complexity:
Symbolic: Deciding membership in A of an element $x \in \mathbb{R}$ (with a name).

A motivating example

$$
A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \subseteq \mathbb{R}
$$

Two competing notions of complexity:
Symbolic: Deciding membership in A of an element $x \in \mathbb{R}$ (with a name).

A motivating example

$$
A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \subseteq \mathbb{R}
$$

Two competing notions of complexity:
Symbolic: Deciding membership in A of an element $x \in \mathbb{R}$ (with a name).

A motivating example

$$
A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \subseteq \mathbb{R}
$$

Two competing notions of complexity:
Symbolic: Deciding membership in A of an element $x \in \mathbb{R}$ (with a name).

A motivating example

$$
A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \subseteq \mathbb{R}
$$

Two competing notions of complexity:
Symbolic: Deciding membership in A of an element $x \in \mathbb{R}$ (with a name).

A motivating example

$$
A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \subseteq \mathbb{R}
$$

Two competing notions of complexity:

Symbolic: Deciding membership in A of an element $x \in \mathbb{R}$ (with a name).

Topological:

$$
A=(0,+\infty) \backslash \bigcup_{n \in \mathbb{N}^{*}}\left(\frac{1}{n+1}, \frac{1}{n}\right)
$$

A motivating example

Symbolic descriptions and topological descriptions are equivalent on \mathbb{R} : for any $A \subseteq \mathbb{R}$,

A motivating example

Symbolic descriptions and topological descriptions are equivalent on \mathbb{R} : for any $A \subseteq \mathbb{R}$,

A motivating example

Symbolic descriptions and topological descriptions are equivalent on \mathbb{R} : for any $A \subseteq \mathbb{R}$,

Formalization of the problem

Topological complexity

```
\(\Delta_{1}^{0}\)
```

Borel Hierarchy

Topological complexity

Borel Hierarchy

Topological complexity

Borel Hierarchy

Topological complexity

Borel Hierarchy

Difference Hierarchy

Symbolic complexity

Symbolic complexity

- On a represented space (X, δ);
- For a complexity class $\Gamma\left(\Gamma=\boldsymbol{D}_{2}, \boldsymbol{D}_{\boldsymbol{\omega}}, \boldsymbol{\Pi}_{2}^{0}, \ldots\right)$;

Definition 2 Symbolic complexity
Any $A \subseteq X$ has symbolic complexity Γ if
$\delta^{-1}(A) \in \Gamma$.

Symbolic complexity

- On a represented space (X, δ);
- For a complexity class $\Gamma\left(\Gamma=\boldsymbol{D}_{2}, \boldsymbol{D}_{\boldsymbol{\omega}}, \boldsymbol{\Pi}_{2}^{0}, \ldots\right)$;

Symbolic complexity

- On a represented space (X, δ);
- For a complexity class $\Gamma\left(\Gamma=\boldsymbol{D}_{2}, \boldsymbol{D}_{\boldsymbol{\omega}}, \boldsymbol{\Pi}_{2}^{0}, \ldots\right)$;

Definition 2

Symbolic complexity
Any $A \subseteq X$ has symbolic complexity Γ if

$$
\delta^{-1}(A) \in \Gamma .
$$

Complexity of deciding membership in A with a relativized algorithm!

- $A \in\left[\boldsymbol{\Sigma}_{1}^{0}\right]$ iff deciding $x \in A$ is recursively enumerable (one "mind change");
- $A \in\left[\boldsymbol{D}_{2}\right]$ iff deciding $x \in A$ requires at most two "mind changes";
- In general: bound on the number of "mind changes" \Longleftrightarrow bound on the differences of open sets.

Symbolic and topological complexity

- Topological implies symbolic complexity: $\Gamma \subseteq[\Gamma]$ by continuity of δ;
- Equivalence for semi-decidable/open sets: $\boldsymbol{\Sigma}_{1}^{0}=\left[\boldsymbol{\Sigma}_{1}^{0}\right]$ by admissibility of δ;

Symbolic and topological complexity

- Topological implies symbolic complexity: $\Gamma \subseteq[\Gamma]$ by continuity of δ;
- Equivalence for semi-decidable/open sets: $\boldsymbol{\Sigma}_{1}^{0}=\left[\boldsymbol{\Sigma}_{1}^{0}\right]$ by admissibility of δ;

In this talk:

- A class of spaces with $\Gamma=[\Gamma]$: countably-based spaces;
- Examples of spaces with $\Gamma \neq[\Gamma]$: some coPolish spaces, spaces of open sets, etc...

Case 1: countably-based spaces

Countably-based spaces

Countably-based spaces

Indeed, for $\varphi: S \subseteq \mathbb{N}^{\mathbb{N}} \mapsto\left\{x \in X: S \cap \delta^{-1}(x)\right.$ is non-meager in $\left.\delta^{-1}(x)\right\}$ [Saint Raymond, 2007]

$$
S \in \boldsymbol{\Sigma}_{\alpha}^{0}(\operatorname{dom}(\delta)) \Longrightarrow \varphi(S) \in \boldsymbol{\Sigma}_{\alpha}^{0}(X)
$$

Countably-based spaces

Theorem 3 [De Brecht, 2013], [C.,Hoyrup, 2020]
If X is countably-based, then $\Gamma=[\Gamma]$ in a uniform way.

Indeed, for $\varphi: S \subseteq \mathbb{N}^{\mathbb{N}} \mapsto\left\{x \in X: S \cap \delta^{-1}(x)\right.$ is non-meager in $\left.\delta^{-1}(x)\right\}$ [Saint Raymond, 2007]

$$
S \in \boldsymbol{\Sigma}_{\alpha}^{0}(\operatorname{dom}(\delta)) \Longrightarrow \varphi(S) \in \boldsymbol{\Sigma}_{\alpha}^{0}(X)
$$

Countably-based spaces

Theorem 3

[De Brecht, 2013], [C.,Hoyrup, 2020]
If X is countably-based, then $\Gamma=[\Gamma]$ in a uniform way.

Indeed, for $\varphi: S \subseteq \mathbb{N}^{\mathbb{N}} \mapsto\left\{x \in X: S \cap \delta^{-1}(x)\right.$ is non-meager in $\left.\delta^{-1}(x)\right\}$ [Saint Raymond, 2007]

$$
S \in \Sigma_{\alpha}^{0}(\operatorname{dom}(\delta)) \Longrightarrow \varphi(S) \in \boldsymbol{\Sigma}_{\alpha}^{0}(X)
$$

Theorem 4 [C.,Hoyrup, 2020]

The following are equivalent:

- X is countably-based;
- $\left[\boldsymbol{D}_{2}\right]=\boldsymbol{D}_{2}$ in a uniform way.

Countably-based spaces

$$
\begin{aligned}
{\left[\boldsymbol{\Sigma}_{\alpha}^{0}\right] } & =\boldsymbol{\Sigma}_{\alpha}^{0} \\
{\left[\boldsymbol{\Delta}_{2}^{0}\right] } & =\boldsymbol{\Delta}_{2}^{0} \\
{\left[\boldsymbol{D}_{\alpha}\right] } & =\boldsymbol{D}_{\alpha} \\
{\left[\boldsymbol{D}_{2}\right] } & =\boldsymbol{D}_{2} \\
{\left[\boldsymbol{\Sigma}_{1}^{0}\right] } & =\boldsymbol{\Sigma}_{1}^{0}
\end{aligned}
$$

On countably-based spaces

Case 2: real polynomials

Space of real polynomials

Consider $\mathbb{R}[X]=\bigcup_{n \in \mathbb{N}} \mathbb{R}_{n}[X]$ equipped with the coPolish topology:
$O \subseteq \mathbb{R}[X]$ is open if: $\quad \forall n, O$ is open in $\mathbb{R}_{n}[X]$

Space of real polynomials

Consider $\mathbb{R}[X]=\bigcup_{n \in \mathbb{N}} \mathbb{R}_{n}[X]$ equipped with the coPolish topology:
$O \subseteq \mathbb{R}[X]$ is open if: $\quad \forall n, O$ is open in $\mathbb{R}_{n}[X]$
(Admissible) representation of a polynomial $P \in \mathbb{R}[X]$:

- Some bound on the degree $n \geq \operatorname{deg}(P)$;
- The coefficients $\left(p_{0}, \ldots, p_{n}\right)$ such that $P=p_{0}+p_{1} X+\ldots+p_{n} X^{n}$;

Polynomials: complexity of A

$$
A=\left\{P \in \mathbb{R}[X]: p_{0}=0 \text { or } p_{0}>\frac{1}{\operatorname{deg}(P)}\right\}
$$

Proof:

Polynomials: complexity of A

$$
A=\left\{P \in \mathbb{R}[X]: p_{0}=0 \text { or } p_{0}>\frac{1}{\operatorname{deg}(P)}\right\}
$$

Proof:

$$
\frac{1}{m}+\frac{X^{m+1}}{p}(\in A) \xrightarrow[p \rightarrow+\infty]{ } \frac{1}{m}(\notin A) \xrightarrow[m \rightarrow+\infty]{ } 0(\in A)
$$

Complexity of B

$$
B=\left\{\frac{1}{k_{1}}+\frac{X^{k_{1}}}{k_{2}}+\frac{X^{k_{2}}}{k_{3}}+\cdots+\frac{X^{k_{n-2}}}{k_{n-1}}+\frac{X^{k_{n-1}}}{k_{n}}: k_{1}<k_{2}<\cdots<k_{n} \text { and } n \text { even }\right\}
$$

Lemma 7

Complexity of B

- $B \in\left[\boldsymbol{D}_{\mathbf{2}}\right]$;
- $B \in \Delta_{2}^{\mathbf{0}}$ and not below.

Complexity on the space of real polynomials

$$
\begin{gathered}
{\left[\Sigma_{2}^{0}\right]=\Sigma_{2}^{0}} \\
{\left[\Delta_{2}^{0}\right]=\Delta_{2}^{0}} \\
\vdots \\
{\left[D_{2}\right] \longleftrightarrow D_{2}} \\
{\left[\Sigma_{1}^{0}\right]=\Sigma_{1}^{0}}
\end{gathered}
$$

On $\mathbb{R}[X]$

Topology vs. sequentiality

Why is there a difference between topological and symbolic complexity?

Topology vs. sequentiality

Why is there a difference between topological and symbolic complexity?

Partial explanation:

The difference is related to the mismatch between topological and sequential aspects of the space.

continuity	sequential continuity compactness sequential compactness closure
sequential closure	

Topology vs. sequentiality

Why is there a difference between topological and symbolic complexity?

Partial explanation:

The difference is related to the mismatch between topological and sequential aspects of the space.

continuity	sequential continuity compactness sequential compactness closure
sequential closure	

Indeed:

Theorem 8 [C.,Hoyrup, 2020]
For X a coPolish space, the following are equivalent:

- Closure and sequential closure coincide on X (Fréchet-Urysohn);
- For every $n \in \mathbb{N},\left[\boldsymbol{D}_{\boldsymbol{n}}\right]=\boldsymbol{D}_{\boldsymbol{n}}$.

Case 3: spaces of open sets

Spaces of open sets

The category of admissibly represented spaces is cartesian closed. In particular, if X is admissibly represented, then $\mathcal{O}(X)$ (equipped with Scott topology) is too [Schröder, 2015].

Spaces of open sets

The category of admissibly represented spaces is cartesian closed. In particular, if X is admissibly represented, then $\mathcal{O}(X)$ (equipped with Scott topology) is too [Schröder, 2015].

(Non-effective proof)

$$
\left[D_{\omega}\right] \longleftrightarrow D_{\omega}
$$

$$
\left[D_{2}\right]=D_{2}
$$

$$
\left[\Sigma_{1}^{0}\right]=\Sigma_{1}^{0}
$$

Open sets of Polish spaces

What about higher complexities?

Open sets of Polish spaces

What about higher complexities? [Hoyrup, 2020] Let $X_{n k}=\{x \in X: x$ has no compact neighborhood $\}$.

Class I: $X_{n k}=\emptyset$

Class III: σ-compact

$$
\begin{aligned}
{\left[\boldsymbol{D}_{\boldsymbol{n}}\right] } & =\boldsymbol{D}_{\boldsymbol{n}} \\
{\left[\boldsymbol{\Sigma}_{1}^{0}\right] } & =\boldsymbol{\Sigma}_{1}^{0}
\end{aligned}
$$

Class IV: not σ-compact

$$
\left[\boldsymbol{D}_{n}\right]=\boldsymbol{D}_{n}
$$

$$
\left[\Sigma_{1}^{0}\right]=\Sigma_{1}^{0}
$$

Partial conclusion

Countably-based $\bullet[\Gamma]=\Gamma$;
spaces

- there exists some $A \in\left[\boldsymbol{D}_{\mathbf{2}}\right]$ with A not below $\boldsymbol{\Delta}_{2}^{\mathbf{0}}$;
- for every $\alpha,\left[\boldsymbol{\Sigma}_{\boldsymbol{\alpha}}^{0}\right]=\boldsymbol{\Sigma}_{\boldsymbol{\alpha}}^{\mathbf{0}}$;
- $\left[\boldsymbol{D}_{\boldsymbol{n}}\right]=\boldsymbol{D}_{\boldsymbol{n}}$ for $n \in \mathbb{N}$: well-behaved low complexity;
$\mathcal{O}(X)$
- In some cases, $\left[\boldsymbol{\Sigma}_{\alpha}^{\mathbf{0}}\right]$ and $\boldsymbol{\Sigma}_{\boldsymbol{\alpha}}^{\mathbf{0}}$ disagree at low levels, then agree;
- In some others, they never agree.

Partial conclusion

```
Countably-based \(\quad[\Gamma]=\Gamma\);
spaces
    - there exists some \(A \in\left[\boldsymbol{D}_{\mathbf{2}}\right]\) with \(A\) not below \(\boldsymbol{\Delta}_{2}^{\mathbf{0}}\);
    - for every \(\alpha,\left[\boldsymbol{\Sigma}_{\boldsymbol{\alpha}}^{\mathbf{0}}\right]=\boldsymbol{\Sigma}_{\boldsymbol{\alpha}}^{\mathbf{0}}\);
```

 - \(\left[\boldsymbol{D}_{\boldsymbol{n}}\right]=\boldsymbol{D}_{\boldsymbol{n}}\) for \(n \in \mathbb{N}\) : well-behaved low complexity;
 $\mathcal{O}(X)$

- In some cases, $\left[\boldsymbol{\Sigma}_{\boldsymbol{\alpha}}^{\mathbf{0}}\right]$ and $\boldsymbol{\Sigma}_{\boldsymbol{\alpha}}^{\mathbf{0}}$ disagree at low levels, then agree;
- In some others, they never agree.
Partial explanation (again):

The difference is related to the mismatch between topological and sequential aspects of the space.

Hardness

Hardness in Polish spaces

How can we show that a set A is not in Σ_{2}^{0} ?
\rightarrow Reductions: you prove that A is "harder than" any $\Pi_{2}^{0}=\check{\Sigma}_{2}^{0}$ set of $\mathbb{N}^{\mathbb{N}}$.

Hardness in Polish spaces

How can we show that a set A is not in Σ_{2}^{0} ?
\rightarrow Reductions: you prove that A is "harder than" any $\Pi_{2}^{0}=\check{\Sigma}_{2}^{0}$ set of $\mathbb{N}^{\mathbb{N}}$.

Definition 10
Wadge reducibility

- For $A \subseteq X$ and $B \subseteq Y, A$ is Wadge reducible to B (written $A \leq_{W} B$) if:

$$
\exists f: X \mapsto Y, \quad x \in A \Longleftrightarrow f(x) \in B
$$

- $A \subseteq X$ is Γ-hard if:

$$
\forall C \in \Gamma\left(\mathbb{N}^{\mathbb{N}}\right), C \leq_{W} A
$$

Hardness in Polish spaces

$$
\Delta_{2}^{0}
$$

Hardness in Polish spaces

$$
\Delta_{2}^{0}
$$

Hardness on represented spaces

Hardness captures symbolic complexity:

Hardness on represented spaces

Hardness captures symbolic complexity:

Theorem 12

For X a represented space, and $A \subseteq X$ Borel,

$$
A \notin[\Gamma] \Longleftrightarrow A \text { is } \check{\Gamma} \text {-hard }
$$

To capture topological complexity, weakened version of hardness:

Hardness on represented spaces

Hardness captures symbolic complexity:

Theorem 12	C.,Hoyrup, 2020
For X a represented space, and $A \subseteq X$ Borel,	
$A \notin[\Gamma]$	$\Longleftrightarrow A$ is $\check{\Gamma}$-hard
$A \notin \Gamma$	$\Longleftrightarrow A$ is $\check{\Gamma}$-hard*

To capture topological complexity, weakened version of hardness:

Hardness on represented spaces

$$
\Delta_{2}^{0}
$$

Conclusion

Question:

For which classes $\Gamma /$ spaces do we have $\Gamma=[\Gamma]$?

Conclusion

Question:

For which classes $\Gamma /$ spaces do we have $\Gamma=[\Gamma]$?

Answer:

- $\Gamma=[\Gamma]$ on countably-based spaces;
- They differ in general.

- Weaker notion of hardness to capture topological instead of symbolic complexity.

Questions?

