The aperiodic Domino problem in (almost) every dimension

Authors: Antonin CALLARD and Benjamin HELLOUIN DE MENIBUS

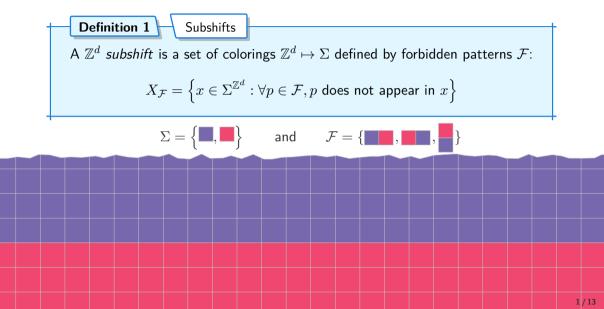
LÍSN

ENS Paris-Saclay & LISN (France)

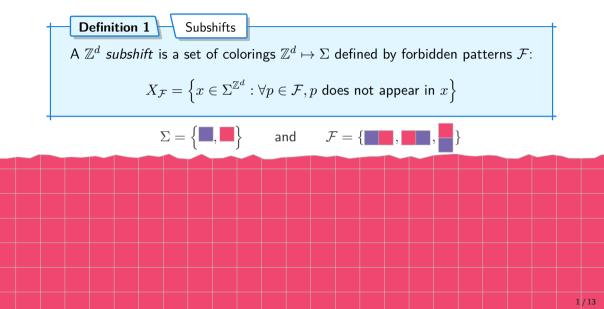
Séminaire Algo, GREYC, June 7th

école-

normale _____ supérieure _____ paris _ saclay _



Definition 1 H Subshifts A \mathbb{Z}^d subshift is a set of colorings $\mathbb{Z}^d \mapsto \Sigma$ defined by forbidden patterns \mathcal{F} : $X_{\mathcal{F}} = \left\{ x \in \Sigma^{\mathbb{Z}^d} : \forall p \in \mathcal{F}, p \text{ does not appear in } x \right\}$ $\Sigma = \left\{ \blacksquare, \blacksquare \right\} \quad \text{and} \quad \mathcal{F} = \left\{ \blacksquare \blacksquare, \blacksquare \blacksquare, \blacksquare \blacksquare \right\}$ 1/13



 $\begin{array}{c|c} \hline \textbf{Definition 1} & \textbf{Subshifts} \\ A & \mathbb{Z}^d \text{ subshift is a set of colorings } \mathbb{Z}^d \mapsto \Sigma \text{ defined by forbidden patterns } \mathcal{F}: \\ & X_{\mathcal{F}} = \left\{ x \in \Sigma^{\mathbb{Z}^d} : \forall p \in \mathcal{F}, p \text{ does not appear in } x \right\} \end{array}$

We consider three classes of subshifts:

- Subshifts of Finite Type (SFTs): $X_{\mathcal{F}}$ for some finite \mathcal{F} .
- Effective subshifts: $X_{\mathcal{F}}$ for some recursively enumerable \mathcal{F} .
- Sofic subshifts: X such that there exists $X' \subseteq (\Sigma')^{\mathbb{Z}^d}$, $\pi : \Sigma' \mapsto \Sigma$, $X = \pi(X')$.

 $\mathsf{SFT} \implies \mathsf{sofic} \implies \mathsf{effective.}$

 $\begin{array}{c|c} \hline \textbf{Definition 1} & \textbf{Subshifts} \\ A & \mathbb{Z}^d \text{ subshift is a set of colorings } \mathbb{Z}^d \mapsto \Sigma \text{ defined by forbidden patterns } \mathcal{F}: \\ & X_{\mathcal{F}} = \left\{ x \in \Sigma^{\mathbb{Z}^d} : \forall p \in \mathcal{F}, p \text{ does not appear in } x \right\} \end{array}$

We consider three classes of subshifts:

- Subshifts of Finite Type (SFTs): $X_{\mathcal{F}}$ for some finite \mathcal{F} .
- Effective subshifts: $X_{\mathcal{F}}$ for some recursively enumerable \mathcal{F} .
- Sofic subshifts: X such that there exists $X' \subseteq (\Sigma')^{\mathbb{Z}^d}$, $\pi : \Sigma' \mapsto \Sigma$, $X = \pi(X')$.

 $\mathsf{SFT} \implies \mathsf{sofic} \implies \mathsf{effective} \implies (d+1)\mathsf{-sofic} [\mathsf{Hoch-2010}, \mathsf{AS-2013}, \mathsf{DRS-2012}].$

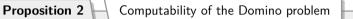
Input A SFT (= symbols + finite set of forbidden pattern) **Output** Is there an admissible coloring?

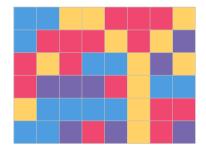
Input A SFT (= symbols + finite set of forbidden pattern) **Output** Is there an admissible coloring?

Proposition 2 — Computability of the Domino problem

Input A SFT (= symbols + finite set of forbidden pattern) **Output** Is there an admissible coloring?

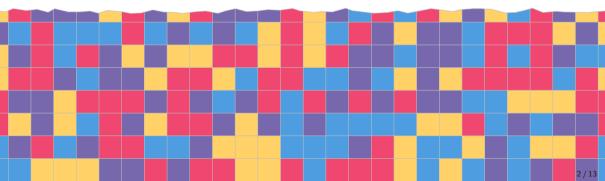
Input A SFT (= symbols + finite set of forbidden pattern) **Output** Is there an admissible coloring?





Input A SFT (= symbols + finite set of forbidden pattern) **Output** Is there an admissible coloring?

Proposition 2 — Computability of the Domino problem



Theorem 2

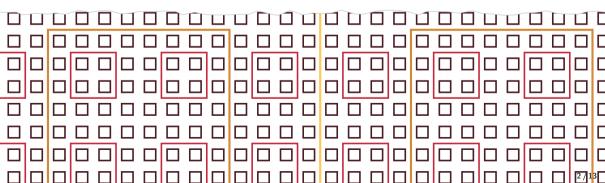
Input A SFT (= symbols + finite set of forbidden pattern) **Output** Is there an admissible coloring?

[Ber66,Rob71,...] Undecidability of the Domino problem

0	U	V	0	0	U	U	0	0	0	v	0	0	0	U	v	0	U	0	U	0	0	0	U	U	U
0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2 /213

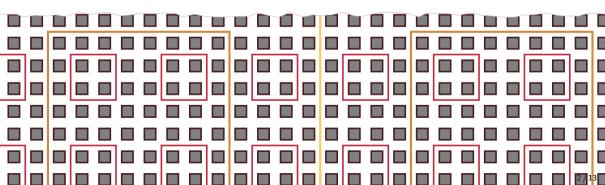
Input A SFT (= symbols + finite set of forbidden pattern) **Output** Is there an admissible coloring?

Theorem 2 [Ber66,Rob71,...] Undecidability of the Domino problem



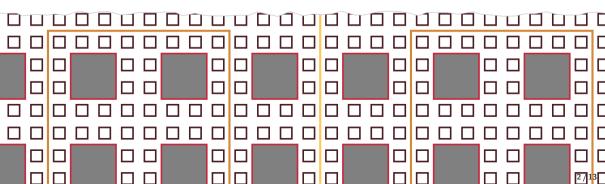
Input A SFT (= symbols + finite set of forbidden pattern) **Output** Is there an admissible coloring?

Theorem 2 [Ber66,Rob71,...] Undecidability of the Domino problem



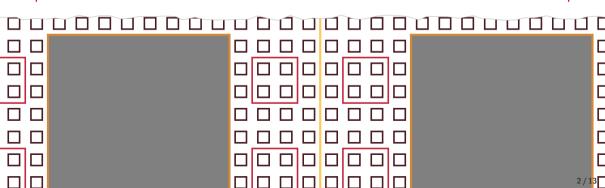
Input A SFT (= symbols + finite set of forbidden pattern) **Output** Is there an admissible coloring?

Theorem 2 [Ber66,Rob71,...] Undecidability of the Domino problem



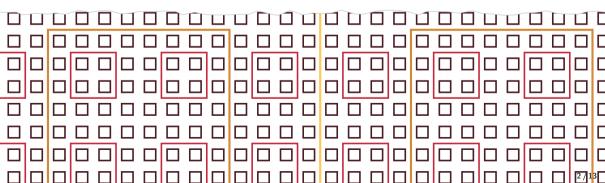
Input A SFT (= symbols + finite set of forbidden pattern) **Output** Is there an admissible coloring?

Theorem 2 [Ber66,Rob71,...] Undecidability of the Domino problem



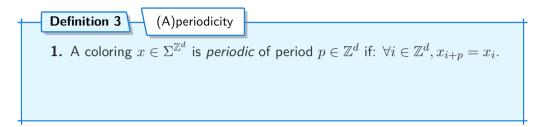
Input A SFT (= symbols + finite set of forbidden pattern) **Output** Is there an admissible coloring?

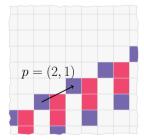
Theorem 2 [Ber66,Rob71,...] Undecidability of the Domino problem



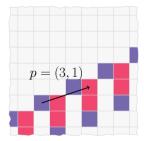
Input A SFT (= symbols + finite set of forbidden pattern) **Output** Is there an admissible coloring?

Theorem 2 [Ber66,Rob71,...] Undecidability of the Domino problem

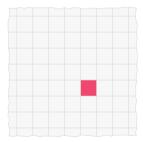




Definition 3 (A)periodicity **1.** A coloring $x \in \Sigma^{\mathbb{Z}^d}$ is *periodic* of period $p \in \mathbb{Z}^d$ if: $\forall i \in \mathbb{Z}^d, x_{i+p} = x_i$. **2.** A period $p \in \mathbb{Z}^d$ is *broken in* $x \in \Sigma^{\mathbb{Z}^d}$ if: $\exists i \in \mathbb{Z}^d, x_{i+p} \neq x_i$.



Definition 3 (A)periodicity
A coloring x ∈ Σ^{Z^d} is *periodic* of period p ∈ Z^d if: ∀i ∈ Z^d, x_{i+p} = x_i.
A period p ∈ Z^d is *broken in* x ∈ Σ^{Z^d} if: ∃i ∈ Z^d, x_{i+p} ≠ x_i.
A coloring x ∈ Σ^{Z^d} is *aperiodic* if it is not periodic.



Definition 3 (A)periodicity
A coloring x ∈ Σ^{Z^d} is *periodic* of period p ∈ Z^d if: ∀i ∈ Z^d, x_{i+p} = x_i.
A period p ∈ Z^d is *broken in* x ∈ Σ^{Z^d} if: ∃i ∈ Z^d, x_{i+p} ≠ x_i.
A coloring x ∈ Σ^{Z^d} is *aperiodic* if it is not periodic.

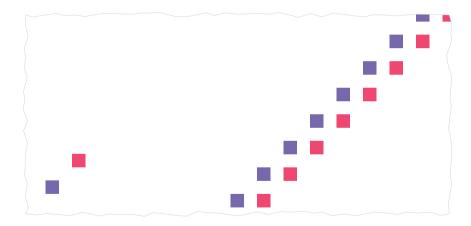
Aperiodic Domino problem:

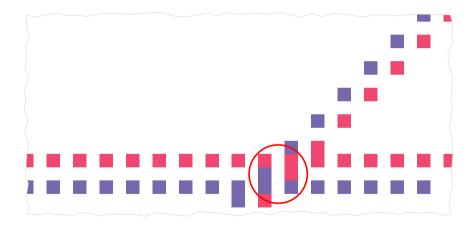
Input An effective \mathbb{Z}^d subshift.

Output Is there an admissible *aperiodic* coloring?

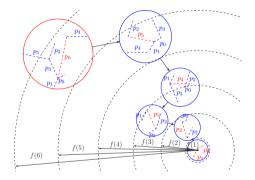
What can we say about the aperiodic Domino?



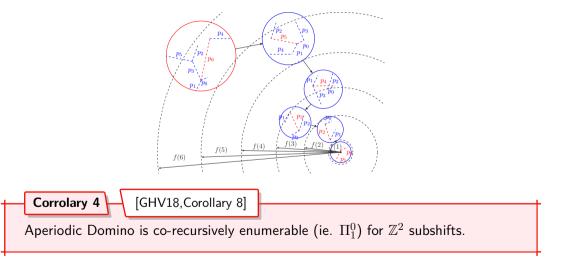


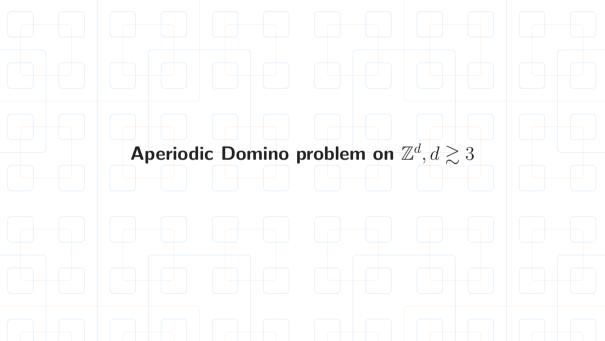


There exists $f : \mathbb{N} \mapsto \mathbb{N}$ computable such that, for any \mathbb{Z}^2 coloring:

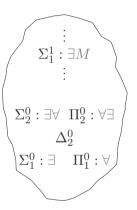


There exists $f : \mathbb{N} \mapsto \mathbb{N}$ computable such that, for any \mathbb{Z}^2 coloring:



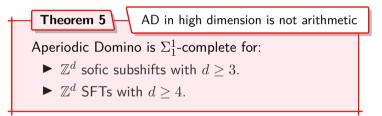


Aperiodic Domino in higher dimension



Input An effective \mathbb{Z}^d subshift.

Output Is there an admissible aperiodic coloring?



We reduce State recurrence:

Input A non-deterministic TM and a state q_0

Output Is there a run on ε that visits q_0 infinitely often?

State recurrence:

Input A non-deterministic TM and a state q_0 Output Is there a run on ε that visits q_0 infinitely often?

 $r = s_0 s_1 s_2 s_3 s_4 \dots$

State recurrence:

Input A non-deterministic TM and a state q_0 Output Is there a run on ε that visits q_0 infinitely often?

 $r = \underline{s_0} s_1 s_2 s_3 s_4 \dots$

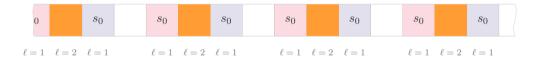
State recurrence:

Input A non-deterministic TM and a state q_0 Output Is there a run on ε that visits q_0 infinitely often?

 $r = \underline{s_0} s_1 s_2 s_3 s_4 \dots$

State recurrence:

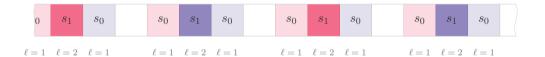
Input A non-deterministic TM and a state q_0 Output Is there a run on ε that visits q_0 infinitely often?



 $r = s_0 s_1 s_2 s_3 s_4 \dots$

State recurrence:

Input A non-deterministic TM and a state q_0 Output Is there a run on ε that visits q_0 infinitely often?



 $r = s_0 s_1 s_2 s_3 s_4 \dots$

State recurrence:

Input A non-deterministic TM and a state q_0 Output Is there a run on ε that visits q_0 infinitely often?

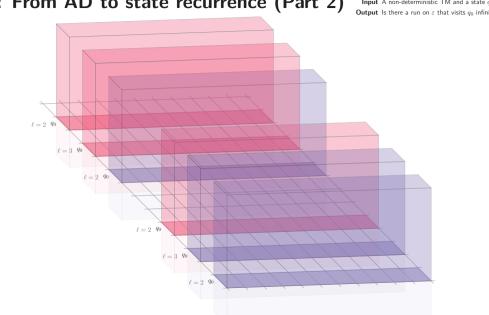
 $r = s_0 s_1 s_2 s_3 s_4 \dots$

State recurrence:

Input A non-deterministic TM and a state q_0 **Output** Is there a run on ε that visits q_0 infinitely often?

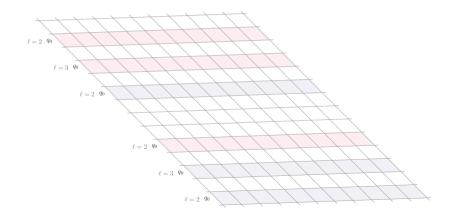
0	s_1	s_0	s_2	s_0	s_1	s_0	s_3	s_0	s_1	s_0	s_2	s_0	s_1	s_0	s
	$\ell = 2$														

 $r = s_0 s_1 s_2 s_3 s_4 \dots$

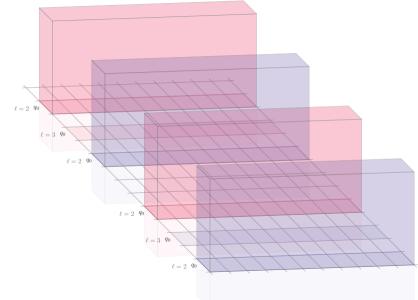


State recurrence:

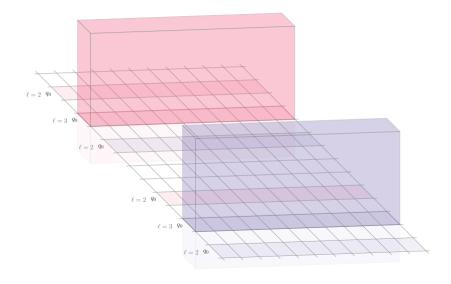
State recurrence:

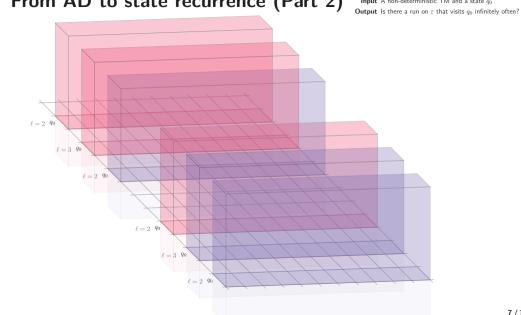


State recurrence:



State recurrence:

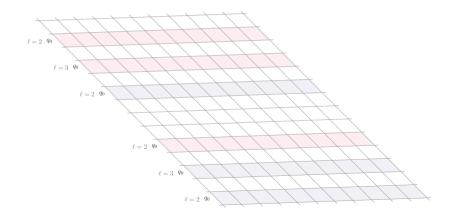




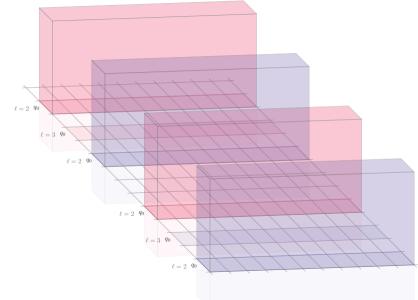
State recurrence:

Input A non-deterministic TM and a state q_0

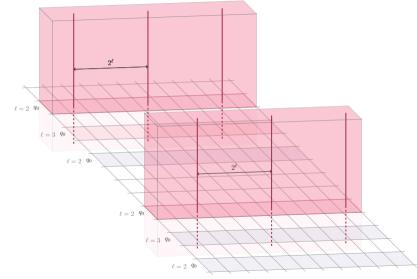
State recurrence:



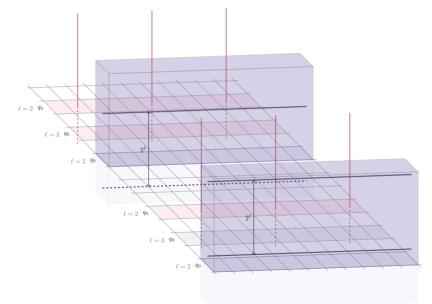
State recurrence:



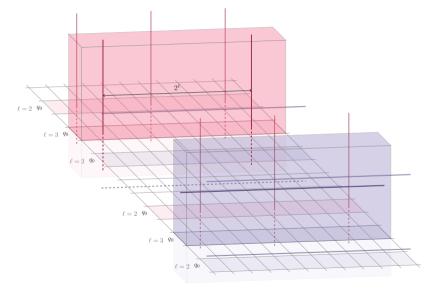
State recurrence:



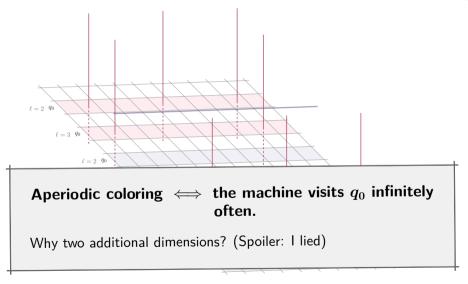
State recurrence:



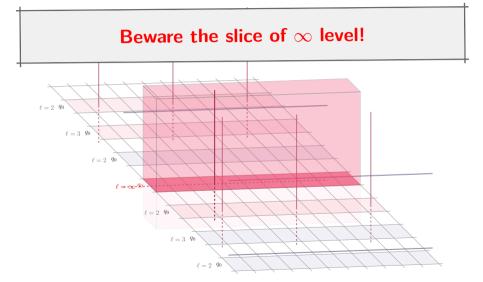
State recurrence:



State recurrence:



State recurrence:



Recap and consequences

Aperiodic Domino problem:

Input An effective \mathbb{Z}^d subshift.

Output Is there an admissible *aperiodic* coloring?

Its (computational) complexity depends on the dimension of the subshift. \implies : separates 2, 3 and 4-dimensional subshifts.

Dimension / type	2D	3D	4D+
finite type	Π_1^0	open	Σ_1^1
sofic	Π_1^0	Σ_1^1	Σ_1^1
effective	Π^0_1	Σ_1^1	Σ_1^1

Difficulty of the Domino problem

Recap and consequences

Aperiodic Domino problem:

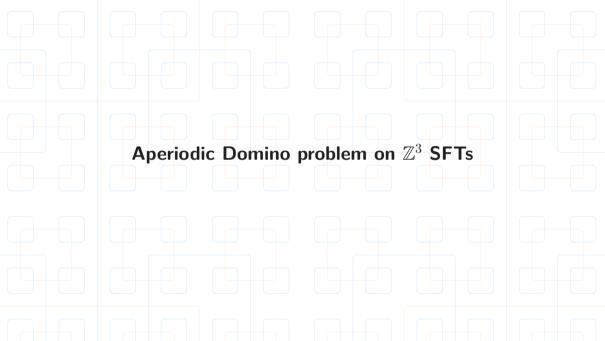
Input An effective \mathbb{Z}^d subshift.

Output Is there an admissible *aperiodic* coloring?

Its (computational) complexity depends on the dimension of the subshift. \implies : separates 2, 3 and 4-dimensional subshifts.

Dimension / type	2D	3D	4D+
finite type	Π_1^0	Π_1^0 ?	Σ_1^1
sofic	Π_1^0	Σ_1^1	Σ_1^1
effective	Π^0_1	Σ_1^1	Σ_1^1

Difficulty of the Domino problem



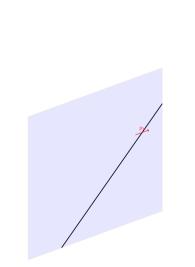
po

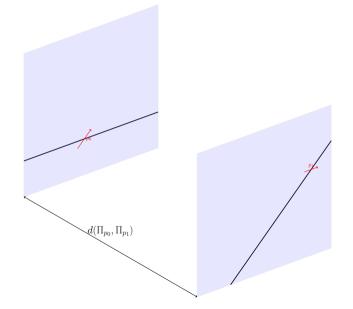
9/13

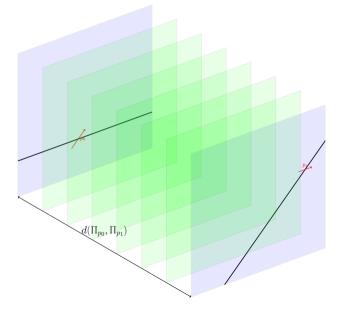
 p_1

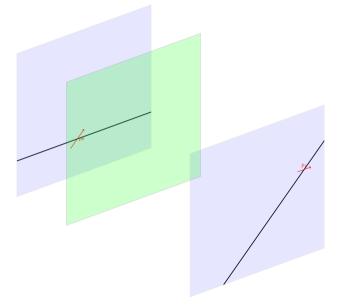
/p0

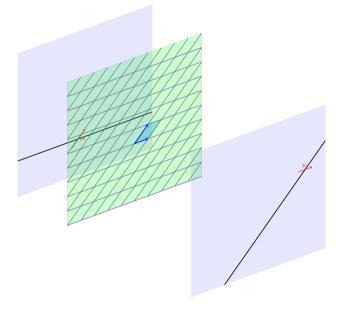
 p_1

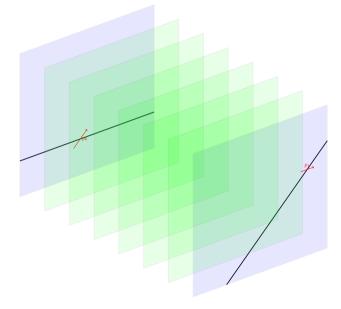


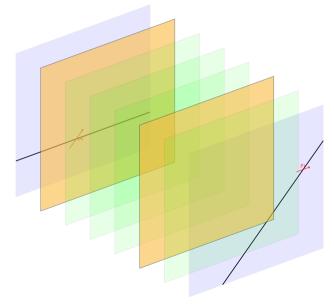




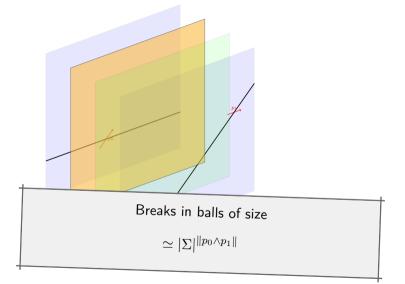












AD on \mathbb{Z}^3 SFTs

Do \mathbb{Z}^3 SFTs behave similarly to \mathbb{Z}^2 subshifts in terms of aperiodicity? i.e.

Conjecture 6

There exists a computable function f such that any \mathbb{Z}^3 SFT $X \in EAC$ contains a configuration which breaks any period $||p|| \leq n$ inside the centered square of edge $f(W, |\Sigma|, n)$.

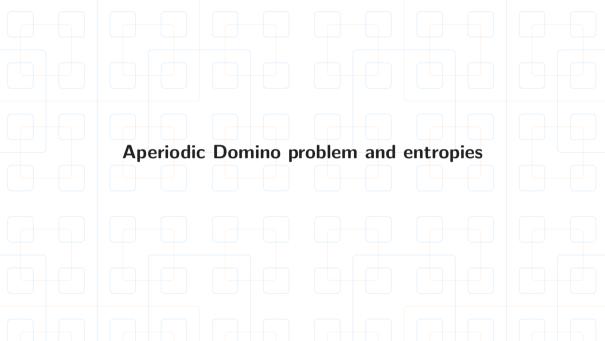
AD on \mathbb{Z}^3 SFTs

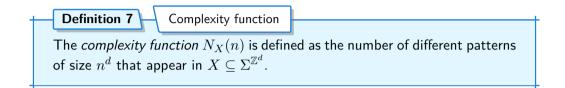
Do \mathbb{Z}^3 SFTs behave similarly to \mathbb{Z}^2 subshifts in terms of aperiodicity? i.e.

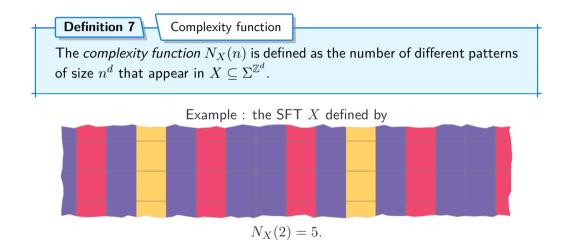
Conjecture 6 There exists a computable function f such that any \mathbb{Z}^3 SFT $X \in EAC$ contains a configuration which breaks any period $||p|| \leq n$ inside the centered square of edge $f(W, |\Sigma|, n)$.

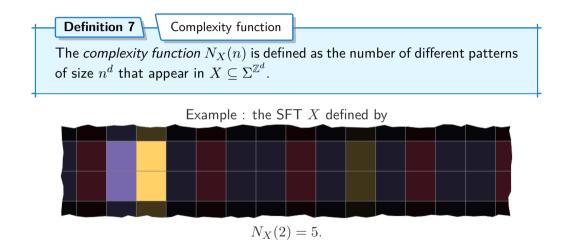
Why?

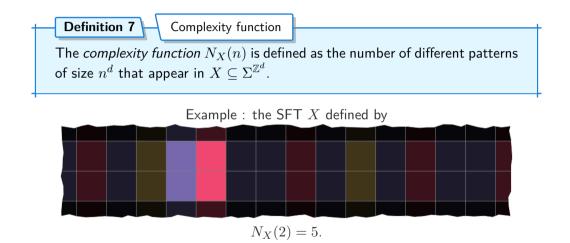
- ▶ Two lines of period breaks do not cross on \mathbb{Z}^3 in general... But they do in \mathbb{Z}^3 SFTs.
- Embedding computations in SFTs requires two dimensions.
- By compactness (i.e. limits), the two additional dimensions of the Σ_1^1 -proof *are necessary*.

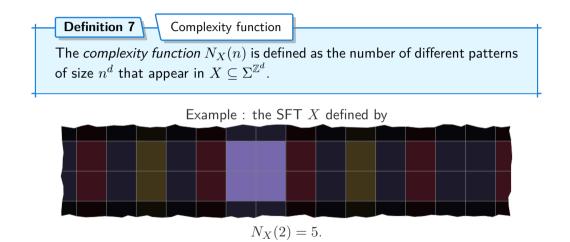


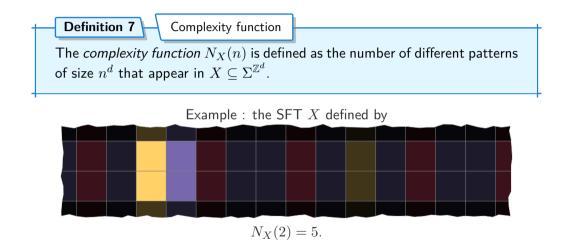


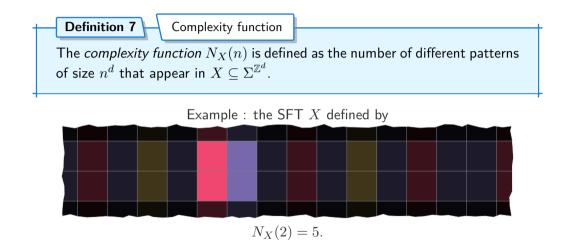


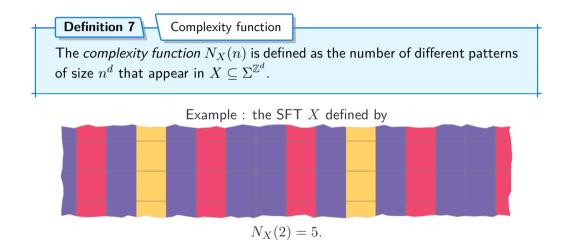












Definition 7 Complexity function The complexity function $N_X(n)$ is defined as the number of different patterns of size n^d that appear in $X \subseteq \Sigma^{\mathbb{Z}^d}$.

Define the *m*-entropy:

$$h_m(X) = \limsup_{n \to +\infty} \frac{\log N_X(n)}{n^m}$$

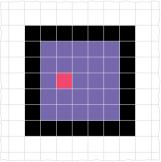
Theorem 8 Improves [Hochman, 2009] Let X be a \mathbb{Z}^d subshift. If $h_{d-1}(X) = +\infty$, then there exists an aperiodic configuration in X.

For X a \mathbb{Z}^d subshift, $h_{d-1}(X) = \limsup_{n \to +\infty} \frac{\log N_X(n)}{n^{d-1}}$ implies that X contains an aperiodic configuration.

Proof:

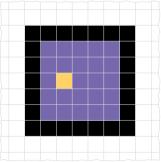
For X a \mathbb{Z}^d subshift, $h_{d-1}(X) = \limsup_{n \to +\infty} \frac{\log N_X(n)}{n^{d-1}}$ implies that X contains an aperiodic configuration.

Proof:



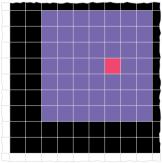
For X a \mathbb{Z}^d subshift, $h_{d-1}(X) = \limsup_{n \to +\infty} \frac{\log N_X(n)}{n^{d-1}}$ implies that X contains an aperiodic configuration.

Proof:



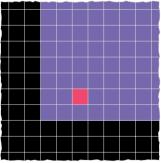
For X a \mathbb{Z}^d subshift, $h_{d-1}(X) = \limsup_{n \to +\infty} \frac{\log N_X(n)}{n^{d-1}}$ implies that X contains an aperiodic configuration.

Proof:



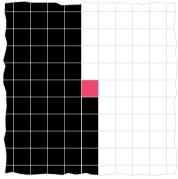
For X a \mathbb{Z}^d subshift, $h_{d-1}(X) = \limsup_{n \to +\infty} \frac{\log N_X(n)}{n^{d-1}}$ implies that X contains an aperiodic configuration.

Proof:



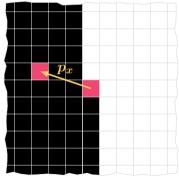
For X a \mathbb{Z}^d subshift, $h_{d-1}(X) = \limsup_{n \to +\infty} \frac{\log N_X(n)}{n^{d-1}}$ implies that X contains an aperiodic configuration.

- 1. If $h_{d-1}(X) = +\infty$, for every $k \in \mathbb{N}$, there exists a border of thickness k with at least two admissible completions of its interior.
- **2.** The "diamond property". For $x, y \in X$ periodic of respective periods p_x and p_y :



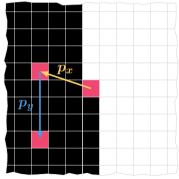
For X a \mathbb{Z}^d subshift, $h_{d-1}(X) = \limsup_{n \to +\infty} \frac{\log N_X(n)}{n^{d-1}}$ implies that X contains an aperiodic configuration.

- 1. If $h_{d-1}(X) = +\infty$, for every $k \in \mathbb{N}$, there exists a border of thickness k with at least two admissible completions of its interior.
- **2.** The "diamond property". For $x, y \in X$ periodic of respective periods p_x and p_y :



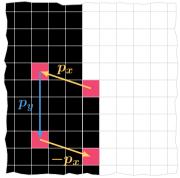
For X a \mathbb{Z}^d subshift, $h_{d-1}(X) = \limsup_{n \to +\infty} \frac{\log N_X(n)}{n^{d-1}}$ implies that X contains an aperiodic configuration.

- 1. If $h_{d-1}(X) = +\infty$, for every $k \in \mathbb{N}$, there exists a border of thickness k with at least two admissible completions of its interior.
- **2.** The "diamond property". For $x, y \in X$ periodic of respective periods p_x and p_y :



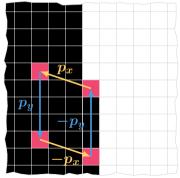
For X a \mathbb{Z}^d subshift, $h_{d-1}(X) = \limsup_{n \to +\infty} \frac{\log N_X(n)}{n^{d-1}}$ implies that X contains an aperiodic configuration.

- 1. If $h_{d-1}(X) = +\infty$, for every $k \in \mathbb{N}$, there exists a border of thickness k with at least two admissible completions of its interior.
- **2.** The "diamond property". For $x, y \in X$ periodic of respective periods p_x and p_y :



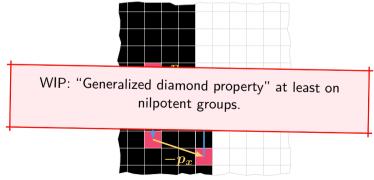
For X a \mathbb{Z}^d subshift, $h_{d-1}(X) = \limsup_{n \to +\infty} \frac{\log N_X(n)}{n^{d-1}}$ implies that X contains an aperiodic configuration.

- 1. If $h_{d-1}(X) = +\infty$, for every $k \in \mathbb{N}$, there exists a border of thickness k with at least two admissible completions of its interior.
- **2.** The "diamond property". For $x, y \in X$ periodic of respective periods p_x and p_y :



For X a \mathbb{Z}^d subshift, $h_{d-1}(X) = \limsup_{n \to +\infty} \frac{\log N_X(n)}{n^{d-1}}$ implies that X contains an aperiodic configuration.

- 1. If $h_{d-1}(X) = +\infty$, for every $k \in \mathbb{N}$, there exists a border of thickness k with at least two admissible completions of its interior.
- **2.** The "diamond property". For $x, y \in X$ periodic of respective periods p_x and p_y :



Conclusion

Aperiodic Domino problem:

Input An effective \mathbb{Z}^d subshift. **Output** Is there an admissible *aperiodic* coloring?

Computational complexity:

Dimension / type	2D	3D	4D+
finite type	Π_1^0	Π_1^0 ?	Σ_1^1
sofic	Π^0_1	Σ_1^1	Σ_1^1
effective	Π^0_1	Σ_1^1	Σ_1^1

Difficulty of the Domino problem

Relates to entropies:

For X a \mathbb{Z}^d subshift, if $h_{d-1}(X) = +\infty$, then X contains an aperiodic configuration.

