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Subshifts

: Definition 1 Subshifts

A Z¢ subshift is a set of colorings Z?% — ¥ defined by forbidden patterns F:

Xr= {x c n2 :Vp € F,p does not appear in 33}

and  F= {II II '}
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Subshifts
] Subshifts

A Z¢ subshift is a set of colorings Z% — X defined by forbidden patterns F:

Xr= {:E c n2 :Vp € F,p does not appear in x}

We consider three classes of subshifts:
» Subshifts of Finite Type (SFTs): X x for some finite F.
» Effective subshifts: Xz for some recursively enumerable F.
> Sofic subshifts: X such that there exists X’ C ()%, 7: %+ %, X = n(X).

SFT = sofic = effective.
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Subshifts
] Subshifts

A Z¢ subshift is a set of colorings Z% — X defined by forbidden patterns F:

Xr= {:E c n2 :Vp € F,p does not appear in x}

We consider three classes of subshifts:
» Subshifts of Finite Type (SFTs): X x for some finite F.
» Effective subshifts: Xz for some recursively enumerable F.
> Sofic subshifts: X such that there exists X’ C ()%, 7: %+ %, X = n(X).

SFT = sofic = effective = (d + 1)-sofic [Hoch-2010,AS-2013,DRS-2012].
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(Classical) Domino problem

Input A SFT (= symbols + finite set of forbidden pattern)
Output s there an admissible coloring?

2/13



(Classical) Domino problem

Input A SFT (= symbols + finite set of forbidden pattern)
Output s there an admissible coloring?

-—[ Proposition 2 \—\ Computability of the Domino problem

The Domino problem is co-recursively enumerable (ie. I1Y).

2/13



(Classical) Domino problem

Input A SFT (= symbols + finite set of forbidden pattern)
Output s there an admissible coloring?

-—{ Proposition 2 \—\ Computability of the Domino problem

The Domino problem is co-recursively enumerable (ie. I1Y).

2/13



(Classical) Domino problem

Input A SFT (= symbols + finite set of forbidden pattern)
Output s there an admissible coloring?

-—| Proposition 2 \—\ Computability of the Domino problem

The Domino problem is co-recursively enumerable (ie. I1Y).

2/13



(Classical) Domino problem

Input A SFT (= symbols + finite set of forbidden pattern)
Output s there an admissible coloring?

-—{ Proposition 2 \‘—\ Computability of the Domino problem

The Domino problem is co-recursively enumerable (ie. I1Y).




(Classical) Domino problem

o o o oo o o

Input A SFT (= symbols + finite set of forbidden pattern)

Output s there an admissible coloring?

[Ber66,Rob71,..] Undecidability of the Domino problem

The Domino problem is co-recursively enumerable (ie. I1{)-complete.
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(Classical) Domino problem
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Input A SFT (= symbols + finite set of forbidden pattern)
Output s there an admissible coloring?

[Ber66,Rob71,..] Undecidability of the Domino problem

The Domino problem is co-recursively enumerable (ie. I1{)-complete.
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(Classical) Domino problem

Input A SFT (= symbols + finite set of forbidden pattern)
Output s there an admissible coloring?

The Domino problem is co-recursively enumerable (ie. I1{)-complete.
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(Classical) Domino problem

Input A SFT (= symbols + finite set of forbidden pattern)

Output s there an admissible coloring?

[Ber66,Rob71,..] Undecidability of the Domino problem

The Domino problem is co-recursively enumerable (ie. I1{)-complete.
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(Classical) Domino problem

Jojoojogjon

Input A SFT (= symbols + finite set of forbidden pattern)
Output s there an admissible coloring?

[Ber66,Rob71,..] Undecidability of the Domino problem

The Domino problem is co-recursively enumerable (ie. I1{)-complete.
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(Classical) Domino problem

Jojoojogjon

Input A SFT (= symbols + finite set of forbidden pattern)
Output s there an admissible coloring?

[Ber66,Rob71,..] Undecidability of the Domino problem

The Domino problem is co-recursively enumerable (ie. I1{)-complete.
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Aperiodic Domino problem

(A)periodicity

1. A coloring = € IZE periodic of period p € Z% if: Vi € Zd,xiﬂ, = a83.
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(A)periodicity

1. A coloring = € IZE periodic of period p € Z% if: Vi € Zd,xiﬂ, = a83.
2. A period p € Z% is broken in € 24 if: 3 € Zd,xiﬂ, =£ 303,
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Aperiodic Domino problem

. (A)periodicity

1. A coloring = € IS periodic of period p € Z¢ if: Vi € 72, Titp = T;.
2. A period p € Z% is broken in € 24 if: 3 € Zd,xiﬂ, =£ 73,

3. A coloring x € 2% s aperiodic if it is not periodic.
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Aperiodic Domino problem

. (A)periodicity

1. A coloring = € IS periodic of period p € Z¢ if: Vi € 74, Titp = Tj.
2. A period p € Z% is broken in x € 27 if 3i e 73, 21 p 7 Ti-

3. A coloring x € 2% s aperiodic if it is not periodic.

Aperiodic Domino problem:
Input An effective Z¢ subshift.

Output s there an admissible aperiodic coloring?

What can we say about the aperiodic Domino?
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Aperiodic Domino problem on Z* [GHV18]



[GHV18] On Z?: The shepherd of periods

Consider a Z? coloring that is neither pg = (2,2) nor p; = (2,0) periodic. Then:
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[GHV18] On Z?: The shepherd of periods

There exists f : N — N computable such that, for any Z? coloring:
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[GHV18] On Z?: The shepherd of periods

There exists f : N — N computable such that, for any Z? coloring:

Corrolary 4 [GHV18,Corollary 8]

Aperiodic Domino is co-recursively enumerable (ie. T19) for Z? subshifts.
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Aperiodic Domino problem on Z% d > 3



Aperiodic Domino in higher dimension

Input An effective Z¢ subshift.
Output Is there an admissible aperiodic coloring?

. AD in high dimension is not arithmetic

Aperiodic Domino is ¥1-complete for:
» 7% sofic subshifts with d > 3.
> 74 SFTs with d > 4.

¥ aMm

¥9:3v 109 : v3
A
.3 1d:v

We reduce State recurrence:
Input A non-deterministic TM and a state qg

Output Is there a run on ¢ that visits g infinitely often?

5/13



State recurrence:

On Z*: From AD to state recurrence (Part 1) e smonwcmme s s

Output Is there a run on ¢ that visits gy infinitely often?

T = 8051525354 ...
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On Z3: From AD to state recurrence (Part 1) e T e

Input A non-deterministic TM and a state g

Output Is there a run on ¢ that visits gy infinitely often?
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T = 8051525354 ...
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State recurrence:

O rl Z3 : From A D to state recu rrence (Part 2) Input A non-deterministic TM and a state ¢

Output Is there a run on & that visits g infinitely often?
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State recurren

On Z3: From AD to state recurrence (Part 2) im t e s s

Output Is there a run on ¢ that visits gq infinitely often?
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State recurrence:

On Z?: From AD to state recurrence (Part 2) i smoscmmsc s s
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State recurren

On Z°: From AD to state recurrence (Part 2) s smsmmsicrimis s

Output Is there a run on & that visits g infinitely often?
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On 7Z3:

State recurrence:

From A D to state recu rrence ( Part 2) Input A non-deterministic TM and a state g

Output Is there a run on ¢ that visits gy infinitely often?

(=2 9

3 4o

2 90

Aperiodic coloring <= the machine visits g infinitely
often.

Why two additional dimensions? (Spoiler: | lied)
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State recurrence:

On Z3: From AD to state recurrence (Part 2) s s ssei

Output s there a run on ¢ that visits gy infinitely often?

Beware the slice of oo level!
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Recap and consequences

Aperiodic Domino problem:
Input An effective Z% subshift.

Output Is there an admissible aperiodic coloring?

Its (computational) complexity depends on the dimension of the subshift.

— : separates 2,3 and 4-dimensional subshifts.

Dimension / type ‘ 2D 3D 4D+
finite type 119 open o
sofic Y o o
effective 119 i i

Difficulty of the Domino problem
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Aperiodic Domino problem on Z3 SFTs



Two lines must cross in Z> SFTs
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Two lines must cross in Z> SFTs
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Two lines must cross in Z> SFTs
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Two lines must cross in Z> SFTs

Breaks in balls of size

~ ‘EJHPO/\IJIH
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AD on Z3 SFTs

Do Z? SFTs behave similarly to Z? subshifts in terms of aperiodicity? i.e.

—‘ Conjecture 6 t\

There exists a computable function f such that any Z3 SFT X € EAC
contains a configuration which breaks any period ||p|| < n inside the
centered square of edge f(W,|X|,n).
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AD on 7Z? SFTs

Do Z? SFTs behave similarly to Z? subshifts in terms of aperiodicity? i.e.

—‘ Conjecture 6 t\

There exists a computable function f such that any Z3 SFT X € EAC
contains a configuration which breaks any period ||p|| < n inside the
centered square of edge f(W,|X|,n).

Why?
» Two lines of period breaks do not cross on Z3 in general... But they do in Z3 SFTs.
» Embedding computations in SFTs requires two dimensions.

» By compactness (i.e. limits), the two additional dimensions of the :1-proof are necessary.
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Aperiodic Domino problem and entropies



Complexity function

] Complexity function

The complexity function Nx (n) is defined as the number of different patterns
of size n? that appear in X C %27,
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Complexity function

] Complexity function

The complexity function Nx (n) is defined as the number of different patterns
of size n? that appear in X C %27,

Define the m-entropy:
log N
B (X) = lim sup 081X x(n)

n—+00 nm

1 Improves [Hochman, 2009]

Let X be a Z? subshift. If hy_1(X) = 400, then there exists an aperiodic
configuration in X.
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Aperiodic Domino and entropies
For X a Z% subshift, hy_1(X) = limsup,, _, , . 255" implies that
X contains an aperiodic configuration.

Proof:
1. If hg—1(X) = +oo, for every k € N, there exists a border of thickness &k with at least two
admissible completions of its interior.

12/13



Aperiodic Domino and entropies

For X a Z% subshift, hy_1(X) = limsup,, _, , . 255" implies that
X contains an aperiodic configuration.
Proof:
1. If hg—1(X) = +oo, for every k € N, there exists a border of thickness &k with at least two
admissible completions of its interior.

12/13



Aperiodic Domino and entropies

For X a Z% subshift, hy_1(X) = limsup,, _, , . 255" implies that
X contains an aperiodic configuration.
Proof:
1. If hg—1(X) = +oo, for every k € N, there exists a border of thickness &k with at least two
admissible completions of its interior.

12/13



Aperiodic Domino and entropies

For X a Z¢ subshift, hy_1(X) = limsup, _, o BN implies that

X contains an aperiodic configuration.

Proof:
1. If hg—1(X) = +oo, for every k € N, there exists a border of thickness &k with at least two

admissible completions of its interior.
[N I A e

12/13



Aperiodic Domino and entropies

For X a Z¢ subshift, hy_1(X) = limsup, _, o BN implies that
X contains an aperiodic configuration.
Proof:
1. If hg—1(X) = +oo, for every k € N, there exists a border of thickness &k with at least two

admissible completions of its interior.
N 0 e o o

12/13



Aperiodic Domino and entropies

For X a Z< subshift, hq_1(X) = limsup,,_, , o h’%ﬁfl(n) implies that

X contains an aperiodic configuration.

Proof:
1. If hg—1(X) = +o0, for every k € N, there exists a border of thickness k with at least two
admissible completions of its interior.
2. The “diamond property”. For z,y € X periodic of respective periods . and

12/13



Aperiodic Domino and entropies

For X a Z% subshift, hy_1(X) = limsup,,_,, o h’%ﬁfl(n) implies that

X contains an aperiodic configuration.
Proof:

1. If hg—1(X) = +o0, for every k € N, there exists a border of thickness k with at least two
admissible completions of its interior.

2. The “diamond property”. For z,y € X periodic of respective periods . and

o
L]
IHEEEN
INEEENS
IEEEErN
1 [ [ [ 8

12/13



Aperiodic Domino and entropies

For X a Z% subshift, hy_1(X) = limsup,,_,, o h’%ﬁfl(n) implies that

X contains an aperiodic configuration.

Proof:
1. If hg—1(X) = +o0, for every k € N, there exists a border of thickness k with at least two
admissible completions of its interior.
2. The “diamond property”. For z,y € X periodic of respective periods . and

12/13



Aperiodic Domino and entropies

For X a Z% subshift, hy_1(X) = limsup,,_,, o h’%ﬁfl(n) implies that

X contains an aperiodic configuration.

Proof:
1. If hg_1(X) = 400, for every k € N, there exists a border of thickness k with at least two
admissible completions of its interior.
2. The “diamond property”. For z,y € X periodic of respective periods . and

12/13



Aperiodic Domino and entropies

For X a Z% subshift, hy_1(X) = limsup,,_,, o h’%ﬁfl(n) implies that

X contains an aperiodic configuration.
Proof:
1. If hg_1(X) = 400, for every k € N, there exists a border of thickness k with at least two
admissible completions of its interior.

2. The “diamond property”. For z,y € X periodic of respective periods . and
1 e

o

H

H

o | |
Hy RN

o e s s Y e i
3
1 ===

IVANENSEE

EE

12/13



Aperiodic Domino and entropies

For X a Z% subshift, hq_1(X) = lim SUD;, s 400 % implies that

X contains an aperiodic configuration.
Proof:
1. If hg_1(X) = 400, for every k € N, there exists a border of thickness k with at least two
admissible completions of its interior.

2. The “diamond property”. For z,y € X periodic of respective periods = and p,:
1 e

—— Wmm—— e

WIP: “Generalized diamond property” at least on
nilpotent groups.
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Conclusion
Aperiodic Domino problem:
Input An effective Z¢ subshift.
Output s there an admissible aperiodic coloring?

Computational complexity:

Dimension / type ‘ 2D 3D 4D+
finite type 119 19? o
sofic Y 3 o5
effective 119 T 0

Difficulty of the Domino problem

Relates to entropies:

For X a Z% subshift, if hq_1(X) = +oo, then X contains
an aperiodic configuration.
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Thank you

Questions?
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