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Subshifts

Def]def:subshifts
Definition 1 Subshifts

A Zd subshift is a set of colorings Zd 7→ Σ defined by forbidden patterns F :

XF =
{

x ∈ ΣZd : ∀p ∈ F , p does not appear in x
}

Σ =
{

,
}

and F = { , , }
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Def]def:subshifts
Definition 1 Subshifts

A Zd subshift is a set of colorings Zd 7→ Σ defined by forbidden patterns F :

XF =
{

x ∈ ΣZd : ∀p ∈ F , p does not appear in x
}

We consider three classes of subshifts:
I Subshifts of Finite Type (SFTs): XF for some finite F .
I Effective subshifts: XF for some recursively enumerable F .
I Sofic subshifts: X such that there exists X ′ ⊆ (Σ′)Zd , π : Σ′ 7→ Σ, X = π(X ′).

SFT =⇒ sofic =⇒ effective.
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I Effective subshifts: XF for some recursively enumerable F .
I Sofic subshifts: X such that there exists X ′ ⊆ (Σ′)Zd , π : Σ′ 7→ Σ, X = π(X ′).

SFT =⇒ sofic =⇒ effective =⇒ (d + 1)-sofic [Hoch-2010,AS-2013,DRS-2012].
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(Classical) Domino problem
Input A SFT (= symbols + finite set of forbidden pattern)

Output Is there an admissible coloring?
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(Classical) Domino problem
Input A SFT (= symbols + finite set of forbidden pattern)

Output Is there an admissible coloring?

Th]th:domino-re-complete

Theorem 2 [Ber66,Rob71,…] Undecidability of the Domino problem

The Domino problem is co-recursively enumerable (ie. Π0
1)-complete.
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(Classical) Domino problem
Input A SFT (= symbols + finite set of forbidden pattern)

Output Is there an admissible coloring?

Th]th:domino-re-complete

Theorem 2 [Ber66,Rob71,…] Undecidability of the Domino problem

The Domino problem is co-recursively enumerable (ie. Π0
1)-complete.

Aperiodic colorings!
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Aperiodic Domino problem

Def]def:periodicity

Definition 3 (A)periodicity

1. A coloring x ∈ ΣZd is periodic of period p ∈ Zd if: ∀i ∈ Zd, xi+p = xi.

2. A period p ∈ Zd is broken in x ∈ ΣZd if: ∃i ∈ Zd, xi+p 6= xi.
3. A coloring x ∈ ΣZd is aperiodic if it is not periodic.

p = (2, 1)
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Aperiodic Domino problem

Def]def:periodicity

Definition 3 (A)periodicity

1. A coloring x ∈ ΣZd is periodic of period p ∈ Zd if: ∀i ∈ Zd, xi+p = xi.
2. A period p ∈ Zd is broken in x ∈ ΣZd if: ∃i ∈ Zd, xi+p 6= xi.
3. A coloring x ∈ ΣZd is aperiodic if it is not periodic.

Aperiodic Domino problem:
Input An effective Zd subshift.

Output Is there an admissible aperiodic coloring?

What can we say about the aperiodic Domino?
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Aperiodic Domino problem on Z2 [GHV18]



[GHV18] On Z2: The shepherd of periods

Consider a Z2 coloring that is neither p0 = (2, 2) nor p1 = (2, 0) periodic. Then:
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[GHV18] On Z2: The shepherd of periods

There exists f : N 7→ N computable such that, for any Z2 coloring:

p6
p5

p4

p3

p2

p1
p0

p0

p3

p1

p2
p5

p4

p0p3

p1 p2p4

p0

p3p1
p2

p0

p1
p2

p0
p1

f(1)f(2)f(3)f(4)
f(5)

f(6)

Cor]cor:adp-z2-co-re

Corrolary 4 [GHV18,Corollary 8]

Aperiodic Domino is co-recursively enumerable (ie. Π0
1) for Z2 subshifts.
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Aperiodic Domino problem on Zd, d & 3



Aperiodic Domino in higher dimension

Σ0
1 : ∃ Π0

1 : ∀
∆0

2

Σ0
2 : ∃∀ Π0

2 : ∀∃

...
Σ1

1 : ∃M

...

Input An effective Zd subshift.
Output Is there an admissible aperiodic coloring?

Theorem 5 AD in high dimension is not arithmetic

Aperiodic Domino is Σ1
1-complete for:

I Zd sofic subshifts with d ≥ 3.
I Zd SFTs with d ≥ 4.

We reduce State recurrence:
Input A non-deterministic TM and a state q0

Output Is there a run on ε that visits q0 infinitely often?
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On Z3: From AD to state recurrence (Part 1)

s0 s0 s0 s0 s0 s0 s0 s0s1 s1 s1 s1

` = 2

s2

` = 2

s2

` = 3

s3

` = 4

s4

r = s0s1s2s3s4 . . .

r = s0s1s2s3s4 . . .r = s0s1s2s3s4 . . .r = s0s1s2s3s4 . . .

` = 1 ` = 1 ` = 1 ` = 1 ` = 1 ` = 1 ` = 1 ` = 1` = 2 ` = 2 ` = 2 ` = 2` = 3 ` = 3` = 4 ` = 5

State recurrence:
Input A non-deterministic TM and a state q0

Output Is there a run on ε that visits q0 infinitely often?
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On Z3: From AD to state recurrence (Part 2)
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On Z3: From AD to state recurrence (Part 2)

q0` = 2

q0` = 2

q0` = 2

q0` = 2

q0` = 3

q0` = 3

2`2`

2`

2`

2`

2`

q0` = ∞

State recurrence:
Input A non-deterministic TM and a state q0

Output Is there a run on ε that visits q0 infinitely often?

Aperiodic coloring ⇐⇒ the machine visits q0 infinitely
often.

Why two additional dimensions? (Spoiler: I lied)
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On Z3: From AD to state recurrence (Part 2)

q0` = 2

q0` = 2

q0` = 2

q0` = 2

q0` = 3

q0` = 3

2`2`

2`

2`

2`

2`

q0` = ∞

State recurrence:
Input A non-deterministic TM and a state q0

Output Is there a run on ε that visits q0 infinitely often?

Beware the slice of ∞ level!
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Recap and consequences

Aperiodic Domino problem:
Input An effective Zd subshift.

Output Is there an admissible aperiodic coloring?

Its (computational) complexity depends on the dimension of the subshift.
=⇒ : separates 2, 3 and 4-dimensional subshifts.

Dimension / type 2D 3D 4D+
finite type Π0

1 open Σ1
1

sofic Π0
1 Σ1

1 Σ1
1

effective Π0
1 Σ1

1 Σ1
1

Difficulty of the Domino problem
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Aperiodic Domino problem on Z3 SFTs



Two lines must cross in Z3 SFTs

p0

p1

p0

p1

d(Πp0, Πp1)
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Two lines must cross in Z3 SFTs

p0

p1

p0

p1

d(Πp0, Πp1)

Breaks in balls of size

' |Σ|‖p0∧p1‖
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AD on Z3 SFTs

Do Z3 SFTs behave similarly to Z2 subshifts in terms of aperiodicity? i.e.

Conj]conj:conj-z3-sfts

Conjecture 6

There exists a computable function f such that any Z3 SFT X ∈ EAC
contains a configuration which breaks any period ‖p‖ ≤ n inside the
centered square of edge f(W, |Σ|, n).

Why?
I Two lines of period breaks do not cross on Z3 in general... But they do in Z3 SFTs.
I Embedding computations in SFTs requires two dimensions.
I By compactness (i.e. limits), the two additional dimensions of the Σ1

1-proof are necessary.
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contains a configuration which breaks any period ‖p‖ ≤ n inside the
centered square of edge f(W, |Σ|, n).

Why?
I Two lines of period breaks do not cross on Z3 in general... But they do in Z3 SFTs.
I Embedding computations in SFTs requires two dimensions.
I By compactness (i.e. limits), the two additional dimensions of the Σ1

1-proof are necessary.
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Complexity function

Def]def:complexity-function

Definition 7 Complexity function

The complexity function NX(n) is defined as the number of different patterns
of size nd that appear in X ⊆ ΣZd .
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Complexity function

Def]def:complexity-function

Definition 7 Complexity function

The complexity function NX(n) is defined as the number of different patterns
of size nd that appear in X ⊆ ΣZd .

Define the m-entropy:
hm(X) = lim sup

n→+∞

log NX(n)
nm

Th]th:ad-complexity

Theorem 8 Improves [Hochman, 2009]

Let X be a Zd subshift. If hd−1(X) = +∞, then there exists an aperiodic
configuration in X.

11 / 13



Aperiodic Domino and entropies
For X a Zd subshift, hd−1(X) = lim supn→+∞

log NX(n)
nd−1 implies that

X contains an aperiodic configuration.
Proof:

1. If hd−1(X) = +∞, for every k ∈ N, there exists a border of thickness k with at least two
admissible completions of its interior.

2. The “diamond property”. For x, y ∈ X periodic of respective periods px and py:
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Proof:

1. If hd−1(X) = +∞, for every k ∈ N, there exists a border of thickness k with at least two
admissible completions of its interior.

2. The “diamond property”. For x, y ∈ X periodic of respective periods px and py:

px

py

−px

−py

WIP: “Generalized diamond property” at least on
nilpotent groups.
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Conclusion
Aperiodic Domino problem:

Input An effective Zd subshift.
Output Is there an admissible aperiodic coloring?

Computational complexity:
Dimension / type 2D 3D 4D+

finite type Π0
1 Π0

1? Σ1
1

sofic Π0
1 Σ1

1 Σ1
1

effective Π0
1 Σ1

1 Σ1
1

Difficulty of the Domino problem

Relates to entropies:

For X a Zd subshift, if hd−1(X) = +∞, then X contains
an aperiodic configuration.
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Thank you

Questions?
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