Fast computations in higher-dimensional tilings

Antonin Callard

Journées SDA2 2025 — Montpellier

1/10



Turing machines

1[1,«
qaﬁmom ) 0 0 0 0 0 0 0 0

2/10



Turing machines
1[1,«

qaﬁmow ) 0 0 1 0 0 0 0 0 ¢
1‘1,J, 1‘1,*)

2/10



Turing machines
1[1,«

qaﬁmom ) 0 0 1 0 0 0 0 0 ¢
1‘1,J, 1‘1,*)

2/10



Turing machines
1[1,«

qaﬁmom ) 0 0 1 0 1 0 0 0 ¢
1‘1,J, 1‘1,*)

2/10



Turing machines
1[1,«

QaﬁmOLH ) 0 0 1 1 1 0 0 0
11,1 11,—

2/10



Turing machines

1[1,«
0|1, 0|0,
%zﬂOl,e ) 0 0 1 1 1 0 0 0
101, 101,

2/10



Turing machines
1[1,«

qaﬁmow ) 0 1 1 1 1 0 0 0 ¢
1‘1,L 1‘1,*)

2/10



Turing machines
1[1,«

QaﬁmOLH ) 0 1 1 1 1 0 0 0 ¢
11,1 11,—

2/10



Turing machines
1[1,«

QaﬁmOLH ) 0 1 1 1 1 0 0 0 ¢
11,1 11,—

2/10



Turing machines
1[1,«

QaﬁmOLH ) 0 1 1 1 1 0 0 0 ¢
11,1 11,—

2/10



Turing machines
1[1,«

QaﬁmOLH ) 0 1 1 1 1 0 0 0 ¢
11,1 11,—

2/10



Turing machines
1[1,«

0|1, 0|0,
%zﬂOl,e ) 0 1 1 1 1 0 1 0
11,1 11,—

2/10



Turing machines
1[1,«

0|1, 0|0,
%zﬂOl,e ) 0 1 1 1 1 1 1 0 ¢
11,1 11,—

2/10



Turing machines

1[1,«
0|1, 0|0,
%zﬂOl,e ) 0 1 1 1 1 1 1 0 ¢
11,1 11,—

2/10



Turing machines
1[1,«

0|1, 0|0,
Qa(éwOI,e ) 0 1 1 1 1 1 1 0 ¢
1[1,] 11,—

2/10



Turing machines

1[1,« v
01, 00,
o 17 oz 011, )y 0 1 1 1 1 1 1
1[1,] 1[1,—

In 2-dimensional tilings, we can embed arbitrary computations by drawing space-time diagrams:

¢
<
¢

v
> 01 1 1 1 0 0 0 ¢
v
)0 1.1 1 1 0 0 0 ¢
v
) 001 1 1 1 0 0 0 ¢(
) 00 1 1 1 0 0 0 ¢(
: v
time|, o o 1 1 1 0 0 0
v
YO 0O 1 0 1 0 0 0 ¢
v
) 00 1 0 0 0 0 0
v
) 001 0 0 0 0 0 ¢
) 00 0 0 0 0 0 0 ¢
Main question |

But what about higher dimensions? Space/time tradeoff?

2/10



Mesh-Connected MultiComputers



Mesh-Connected MultiComputers

Definition

A Mesh-Connected MultiComputer is an array of processors.

t
A processor:
» Contains finitely many variables;
» Can perform arithmetic operations on these variables;
» Can communicate with its immediate neighbors.

3/10



Mesh-Connected MultiComputers

Definition

A Mesh-Connected MultiComputer is an array of processors.

A processor:
» Contains finitely many variables;
» Can perform arithmetic operations on these variables;
» Can communicate with its immediate neighbors.

Consider the SORTING problem:
SORTING
Input: An array a of integers
Output:  The array a sorted in increasing order

- [ n e a s o]« o]

3/10



Mesh-Connected MultiComputers

43 61 36 3 94 66 21 48 64 4 12

Definition

A Mesh-Connected MultiComputer is an array of processors.

A processor:
» Contains finitely many variables;
» Can perform arithmetic operations on these variables;
» Can communicate with its immediate neighbors.

Consider the SORTING problem:
SORTING
Input: An array a of integers
Output:  The array a sorted in increasing order

- [ n e a s o]« o]

3/10



Mesh-Connected MultiComputers

43 61 36 3 94 66 21 48 64 4

12

Definition

A Mesh-Connected MultiComputer is an array of processors.

t
A processor:
» Contains finitely many variables;
» Can perform arithmetic operations on these variables;
» Can communicate with its immediate neighbors.

Consider the SORTING problem:

SORTING
Input: An array a of integers

- [ n e a s o]« o]

Output:  The array a sorted in increasing order

3/10



Mesh-Connected MultiComputers

43 61 36 3 94 66 21 48 64 4

12

Definition

A Mesh-Connected MultiComputer is an array of processors.

t
A processor:
» Contains finitely many variables;
» Can perform arithmetic operations on these variables;
» Can communicate with its immediate neighbors.

Consider the SORTING problem:

SORTING
Input: An array a of integers

- [ n e a s o]« o]

Output:  The array a sorted in increasing order

3/10



Mesh-Connected MultiComputers

43 61 36 3 94 66 21 48 64 4 12

Definition

A Mesh-Connected MultiComputer is an array of processors.

A processor:
» Contains finitely many variables;
» Can perform arithmetic operations on these variables;
» Can communicate with its immediate neighbors.

Consider the SORTING problem:
SORTING
Input: An array a of integers
Output:  The array a sorted in increasing order

- [ n e a s o]« o]

3/10



Mesh-Connected MultiComputers

43 61 36 3 94 66 21 48 64 4 12

Definition

A Mesh-Connected MultiComputer is an array of processors.

A processor:
» Contains finitely many variables;
» Can perform arithmetic operations on these variables;
» Can communicate with its immediate neighbors.

Consider the SORTING problem:
SORTING
Input: An array a of integers
Output:  The array a sorted in increasing order

- [ n e a s o]« o]

3/10



Mesh-Connected MultiComputers

43 61 36 3 94 66 21 48 64 4 12

Definition

A Mesh-Connected MultiComputer is an array of processors.

A processor:
» Contains finitely many variables;
» Can perform arithmetic operations on these variables;
» Can communicate with its immediate neighbors.

Consider the SORTING problem:
SORTING
Input: An array a of integers
Output:  The array a sorted in increasing order

- [ n e a s o]« o]

3/10



Mesh-Connected MultiComputers

43 61 36 3 94 66 21 48 64

4

12

Definition

A Mesh-Connected MultiComputer is an array of processors.

t
A processor:
» Contains finitely many variables;
» Can perform arithmetic operations on these variables;
» Can communicate with its immediate neighbors.

Consider the SORTING problem:

SORTING
Input: An array a of integers

- [ n e a s o]« o]

Output:  The array a sorted in increasing order

3/10



Mesh-Connected MultiComputers

43 61 36 3 94 66 21 48 64 4 12

3 4 12 21 36 43 48 61 64 66 94

Definition

A Mesh-Connected MultiComputer is an array of processors.

A processor:
» Contains finitely many variables;
» Can perform arithmetic operations on these variables;
» Can communicate with its immediate neighbors.

Consider the SORTING problem:
SORTING
Input: An array a of integers
Output:  The array a sorted in increasing order

- [ n e a s o]« o]

3/10



Sorting on a Mesh-Connected MultiComputer

function EVEN-ODD SORT(a)

fork=1,.. do
if k is even then

| Compare (and swap if needed) every even position with its right neighbor;

else (kis odd)

| Compare (and swap if needed) every odd position with its right neighbor.

> a is an array of size n

3 62

50

42

67

13

57

66

47

93

02

48

50

4/10



Sorting on a Mesh-Connected MultiComputer

function EVEN-ODD SORT(a) [> a is an array of size n
fork=1,.. do
if k is even then
| Compare (and swap if needed) every even position with its right neighbor;
else (kis odd)
| Compare (and swap if needed) every odd position with its right neighbor.

P PP~ PP~ PP P~ P
E=1| 3 | 62 | 50 | 42 | 67 | 13 | 57 | 66 | 47 | 93 | 92 | 48 | 50

4/10



Sorting on a Mesh-Connected MultiComputer

function EVEN-ODD SORT(a)

fork=1,.. do

if k is even then

| Compare (and swap if needed) every even position with its right neighbor;

else (kis odd)

| Compare (and swap if needed) every odd position with its right neighbor.

> a is an array of size n

k=1 3

50

62

42

67

13

57

47

66

92

93

48

50

4/10



Sorting on a Mesh-Connected MultiComputer

function EVEN-ODD SORT(a) [> a is an array of size n
fork=1,.. do
if k is even then
| Compare (and swap if needed) every even position with its right neighbor;
else (kis odd)
| Compare (and swap if needed) every odd position with its right neighbor.

N N P P P N
kE=2| 3 | 50 | 62 | 42 | 67 | 13 | 57 | 47 | 66 | 92 | 93 | 48 | 50

4/10



Sorting on a Mesh-Connected MultiComputer

function EVEN-ODD SORT(a)

fork=1,.. do

if k is even then

| Compare (and swap if needed) every even position with its right neighbor;

else (kis odd)

| Compare (and swap if needed) every odd position with its right neighbor.

> a is an array of size n

k=2 3

50

42

62

13

67

47

57

66

92

48

93

50

4/10



Sorting on a Mesh-Connected MultiComputer

function EVEN-ODD SORT(a) [> a is an array of size n
fork=1,.. do
if k is even then
| Compare (and swap if needed) every even position with its right neighbor;
else (kis odd)
| Compare (and swap if needed) every odd position with its right neighbor.

P P P P P P
k=31 3 50 | 42 | 62 | 13 | 67 | 47 | 57 | 66 | 92 | 48 | 93 | 50

4/10



Sorting on a Mesh-Connected MultiComputer

function EVEN-ODD SORT(a)

fork=1,.. do

if k is even then

| Compare (and swap if needed) every even position with its right neighbor;

else (kis odd)

| Compare (and swap if needed) every odd position with its right neighbor.

> a is an array of size n

k=3 3

42

50

13

62

47

67

57

66

48

02

50

93

4/10



Sorting on a Mesh-Connected MultiComputer

function EVEN-ODD SORT(a) [> a is an array of size n
fork=1,.. do
if k is even then
| Compare (and swap if needed) every even position with its right neighbor;
else (kis odd)
| Compare (and swap if needed) every odd position with its right neighbor.

N N P P P N
k=4] 3 | 42 | 50 | 13 | 62 | 47 | 67 | 57 | 66 | 48 | 92 | 50 | 93

4/10



Sorting on a Mesh-Connected MultiComputer

function EVEN-ODD SORT(a)

fork=1,.. do

if k is even then

| Compare (and swap if needed) every even position with its right neighbor;

else (kis odd)

| Compare (and swap if needed) every odd position with its right neighbor.

> a is an array of size n

k=4 3

42

13

50

47

62

57

67

48

66

50

92

93

4/10



Sorting on a Mesh-Connected MultiComputer

function EVEN-ODD SORT(a) [> a is an array of size n
fork=1,.. do
if k is even then
| Compare (and swap if needed) every even position with its right neighbor;
else (kis odd)
| Compare (and swap if needed) every odd position with its right neighbor.

P PP~ PP~ PP P~ P
k=5| 3 | 42 | 13 | 50 | 47 | 62 | 57 | 67 | 48 | 66 | 50 | 92 | 93

4/10



Sorting on a Mesh-Connected MultiComputer

function EVEN-ODD SORT(a)

fork=1,.. do

if k is even then

| Compare (and swap if needed) every even position with its right neighbor;

else (kis odd)

| Compare (and swap if needed) every odd position with its right neighbor.

> a is an array of size n

k=5 3

13

42

47

50

57

62

48

67

50

66

92

93

4/10



Sorting on a Mesh-Connected MultiComputer

function EVEN-ODD SORT(a) [> a is an array of size n
fork=1,.. do
if k is even then
| Compare (and swap if needed) every even position with its right neighbor;
else (kis odd)
| Compare (and swap if needed) every odd position with its right neighbor.

N N P P P N
k=6| 3 | 13 | 42 | 47 | 50 | 57 | 62 | 48 | 67 | 50 | 66 | 92 | 93

4/10



Sorting on a Mesh-Connected MultiComputer

function EVEN-ODD SORT(a)

fork=1,.. do

if k is even then

| Compare (and swap if needed) every even position with its right neighbor;

else (kis odd)

| Compare (and swap if needed) every odd position with its right neighbor.

> a is an array of size n

k=6 3

13

42

47

50

57

48

62

50

67

66

92

93

4/10



Sorting on a Mesh-Connected MultiComputer

function EVEN-ODD SORT(a) [> a is an array of size n
fork=1,.. do
if k is even then
| Compare (and swap if needed) every even position with its right neighbor;
else (kis odd)
| Compare (and swap if needed) every odd position with its right neighbor.

P P P P P P
k=71 3 13 | 42 | 47 | 50 | 57 | 48 | 62 | 50 | 67 | 66 | 92 | 93

4/10



Sorting on a Mesh-Connected MultiComputer

function EVEN-ODD SORT(a)

fork=1,.. do

if k is even then

| Compare (and swap if needed) every even position with its right neighbor;

else (kis odd)

| Compare (and swap if needed) every odd position with its right neighbor.

> a is an array of size n

k=17 3

13

42

47

50

48

57

50

62

66

67

92

93

4/10



Sorting on a Mesh-Connected MultiComputer

function EVEN-ODD SORT(a) [> a is an array of size n
fork=1,.. do
if k is even then
| Compare (and swap if needed) every even position with its right neighbor;
else (kis odd)
| Compare (and swap if needed) every odd position with its right neighbor.

N N P P P N
k=8| 3 | 13 | 42 | 47 | 50 | 48 | 57 | 50 | 62 | 66 | 67 | 92 | 93

4/10



Sorting on a Mesh-Connected MultiComputer

function EVEN-ODD SORT(a)

fork=1,.. do

if k is even then

| Compare (and swap if needed) every even position with its right neighbor;

else (kis odd)

| Compare (and swap if needed) every odd position with its right neighbor.

> a is an array of size n

k=38 3

13

42

47

48

50

50

57

62

66

67

92

93

4/10



Sorting on a Mesh-Connected MultiComputer

> a is an array of size n

function EVEN-ODD SORT(a)
fork=1,.. do

if k is even then
Compare (and swap if needed) every even position with its right neighbor;

else (kis odd)
| Compare (and swap if needed) every odd position with its right neighbor.

67 | 92 | 93

50 | 50 | 57 | 62 | 66

k=8| 3 | 13 | 42 | 47 | 48

Lemma
If the array a has size n, then it is sorted after the iteration k£ = n of EVEN-ODD SORT.

Sketch of proof.

—Y y— yZa—
i [Aaa Al [e oo o o] o] ]

4/10



Sorting on a Mesh-Connected MultiComputer

[> a is an array of size n

function EVEN-ODD SORT(a)
fork=1,.. do

if k is even then
Compare (and swap if needed) every even position with its right neighbor;

else (kis odd)
| Compare (and swap if needed) every odd position with its right neighbor.

67 | 92 | 93

50 | 50 | 57 | 62 | 66

k=8| 3 | 13 | 42 | 47 | 48

Lemma
If the array a has size n, then it is sorted after the iteration k£ = n of EVEN-ODD SORT.

Sketch of proof.

Y Y yZa— yZ—
e2[A1 3 23] [a]o o] o] o] oo o]

4/10



Sorting on a Mesh-Connected MultiComputer

> a is an array of size n

function EVEN-ODD SORT(a)
fork=1,.. do

if k is even then
Compare (and swap if needed) every even position with its right neighbor;

else (kis odd)
| Compare (and swap if needed) every odd position with its right neighbor.

67 | 92 | 93

50 | 50 | 57 | 62 | 66

k=8| 3 | 13 | 42 | 47 | 48

Lemma
If the array a has size n, then it is sorted after the iteration k£ = n of EVEN-ODD SORT.

Sketch of proof.

—Y y— yZa—
v=s[i[a]i Al [alo]aloo o fe]o o] o]

4/10



Sorting on a Mesh-Connected MultiComputer

[> a is an array of size n

function EVEN-ODD SORT(a)
fork=1,.. do

if k is even then
Compare (and swap if needed) every even position with its right neighbor;

else (kis odd)
| Compare (and swap if needed) every odd position with its right neighbor.

67 | 92 | 93

50 | 50 | 57 | 62 | 66

k=8| 3 | 13 | 42 | 47 | 48

Lemma
If the array a has size n, then it is sorted after the iteration k£ = n of EVEN-ODD SORT.

Sketch of proof.

Y Y yZa— yZ—
s3] A [a]o[a]o[a]o s o] oo o]

4/10



Sorting on a Mesh-Connected MultiComputer

> a is an array of size n

function EVEN-ODD SORT(a)
fork=1,.. do

if k is even then
Compare (and swap if needed) every even position with its right neighbor;

else (kis odd)
| Compare (and swap if needed) every odd position with its right neighbor.

67 | 92 | 93

50 | 50 | 57 | 62 | 66

k=8| 3 | 13 | 42 | 47 | 48

Lemma
If the array a has size n, then it is sorted after the iteration k£ = n of EVEN-ODD SORT

Sketch of proof.

ees [ ]a 2 [o 2 ]o s o] oo o o] ]o]

4/10



Sorting on a Mesh-Connected MultiComputer

function EVEN-ODD SORT(a) [> a is an array of size n
fork=1,.. do
if k is even then
| Compare (and swap if needed) every even position with its right neighbor;

else (kis odd)
| Compare (and swap if needed) every odd position with its right neighbor.

92 | 93

42 | 47 | 48 | 50 | 50 | 57 | 62 | 66 | 67

k=8| 3 13

Lemma
If the array a has size n, then it is sorted after the iteration k£ = n of EVEN-ODD SORT.

Corollary
The SORTING problem on MCMCs can be solved in time O(n) on arrays of size n.

4/10



Sorting on a 2D Mesh-Connected MultiComputer

5/10



Sorting on a 2D Mesh-Connected MultiComputer

5/10



Sorting on a 2D Mesh-Connected MultiComputer

5/10



Sorting on a 2D Mesh-Connected MultiComputer

5/10



Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a)
fork=1,.. do

L

Sort rows in increasing and decreasing order alternatively;

Sort columns in increasing order.

11

80

33

99

7

91

85

53

60

55

o

50

24

32

97

45

71

75

16

72

53

48

39

21

21

89

43

20

56

95

79

78

92

48

92

50

62

67

66

47

[> ais an array of size \/n x \/n

6/10



Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a)
fork=1,.. do

L Sort rows in increasing and decreasing order alternatively;

Sort columns in increasing order.

[> ais an array of size \/n x \/n

11

80

33

99

7

91

85

53

60

55

oo

50

24

32

97

45

71

75

16

72

53

48

39

21

21

89

43

20

56

95

79

78

92

48

92

50

62

67

66

47

6/10



Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a)
fork=1,.. do

L Sort rows in increasing and decreasing order alternatively;

Sort columns in increasing order.

24

91

85

55

oo

32

97

45

75

16

72

48

39

21

20

56

95

92

48

92

62

67

[> ais an array of size \/n x \/n

6/10



Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a)
fork=1,.. do

L Sort rows in increasing and decreasing order alternatively;

Sort columns in increasing order.

24

91

85

55

32

97

45

75

16

72

48

39

21

20

56

95

92

48

92

62

67

[> ais an array of size \/n x \/n

6/10



Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a)
fork=1,.. do
Sort rows in increasing and decreasing order alternatively;
L Sort columns in increasing order.

99

91(85(80|67(60|53|43

55189 50(13|94|77

28

32(97(20(43(45|60(79

89

75(16(59|88 (72| 4 |90

48139(24|18(21|50|37

30

2056 |61|58|95|68|45

12

92(48(50(13(92|96|18

53

93

[> ais an array of size \/n x \/n

6/10



Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a)
fork=1,.. do
Sort rows in increasing and decreasing order alternatively;
L Sort columns in increasing order.

99

91(85(80|67(60|53|43

55|89 |50(13(94|77

28

32(97(20(43(45|60(79

89

75(16(59|88 (72| 4 |90

48139(24|18(21|50|37

30

2056 |61|58|95|68|45

12

92(48(50(13(92|96|18

53

93

[> ais an array of size \/n x \/n

6/10



Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a)
fork=1,.. do
Sort rows in increasing and decreasing order alternatively;
L Sort columns in increasing order.

99

91(85(80|67(60|53|43

94

32(97(20(43(45|60(79

89

75(16(59|88 (72| 4 |90

48139(24|18(21|50|37

30

2056 |61|58|95|68|45

12

92(48(50(13(92|96|18

53

93

[> ais an array of size \/n x \/n

6/10



Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a)
fork=1,.. do
Sort rows in increasing and decreasing order alternatively;
L Sort columns in increasing order.

99

91(85(80|67(60|53|43

94

32|97(20|43|45|60|79

89

75(16(59|88 (72| 4 |90

48139(24|18(21|50|37

30

2056 |61|58|95|68|45

12

92(48(50(13(92|96|18

53

93

[> ais an array of size \/n x \/n

6/10



Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a)
fork=1,.. do

L Sort rows in increasing and decreasing order alternatively;

Sort columns in increasing order.

11

24

80

99

91

85

60

24

13

28

7

94

97

89

79

60

23

20

75

16

59

72

48

39

24

21

30

82

43

20

56

61

95

78

12

92

48

50

92

53

62

67

47

93

[> ais an array of size \/n x \/n

6/10



Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a)
fork=1,.. do

L Sort rows in increasing and decreasing order alternatively;

Sort columns in increasing order.

[> ais an array of size \/n x \/n

11

7

91

85

80

39

55

97

89

79

32

75

50

48

39

21

82

95

79

78

13

14

18

92

93

67

66

42

6/10



Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a)
fork=1,.. do

L Sort rows in increasing and decreasing order alternatively;

Sort columns in increasing order.

[> ais an array of size \/n x \/n

11

7

91

85

80

39

55

97

89

79

32

75

50

48

39

21

82

95

79

78

13

14

18

92

93

67

66

42

6/10



Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a)
fork=1,.. do

L Sort rows in increasing and decreasing order alternatively;

Sort columns in increasing order.

[> ais an array of size \/n x \/n

11

7

85

80

39

55

89

79

32

75

48

39

21

82

79

78

14

18

92

67

66

42

6/10



Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a)
fork=1,.. do

L Sort rows in increasing and decreasing order alternatively;

Sort columns in increasing order.

[> ais an array of size \/n x \/n

21

32

39

Ol |o|w

42

14

45

48

55

67

75

79

7

85

82

89

92

6/10



Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a)
fork=1,.. do

L Sort rows in increasing and decreasing order alternatively;

Sort columns in increasing order.

[> ais an array of size \/n x \/n

11

21

21

43

33

32

16

39

43

47

45

42

24

12

13

18

24

47

50

90

55

50

48

47

50

57

66

80

91

96

88

78

60

53

56

60

79

89

95

99

92

89

71

61

6/10



Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a)
fork=1,.. do

L Sort rows in increasing and decreasing order alternatively;

Sort columns in increasing order.

11

=)

13

18

21

43

32

43

47

42

47

50

55

50

56

57

53

90

60

61

96

88

91

99

92

95

[> ais an array of size \/n x \/n

6/10



Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a)
fork=1,.. do

L Sort rows in increasing and decreasing order alternatively;

Sort columns in increasing order.

[> ais an array of size \/n x \/n

5 (11

16

13

21

21

43

24

24

24

47

47

55

50

48

53

66

67

90

61

60

75

93

94

99

89

85

6/10



Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a)
fork=1,.. do

Sort rows in increasing and decreasing order alternatively;

L Sort columns in increasing order.

[> ais an array of size \/n x \/n

13

16

21

24

24

43

47

53

48

55

60

75

67

90

85

99

94

6/10



Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a)
fork=1,.. do
Sort rows in increasing and decreasing order alternatively;
L Sort columns in increasing order.

13|13|13]13|12|1211

14|14]16|18{18]20|20

21

23

3937(33|32(30|28|24

24

24

391424343 |43 45|45

47

47

53153(50|50(50(50|50

48

48

53[55(56|57(58|59|60

61

62

T8|TT|77|75|72|71|68

67

66

79179(80|80(82|85|88

89

90

99199(97|96 (95|94|93

92

91

[> ais an array of size \/n x \/n

6/10



Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a)
fork=1,.. do
Sort rows in increasing and decreasing order alternatively;
L Sort columns in increasing order.

13|13|13]13|12|1211

14|14]16|18{18]20|20

21

23

3937(33|32(30|28|24

24

24

391424343 |43 45|45

47

47

53153(50|50(50(50|50

48

48

53[55(56|57(58|59|60

61

62

T8|TT|77|75|72|71|68

67

66

79179(80|80(82|85|88

89

90

99199(97|96 (95|94|93

92

91

[> ais an array of size \/n x \/n

6/10



Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a) [> ais an array of size \/n x \/n
fork=1,.. do
Sort rows in increasing and decreasing order alternatively;
L Sort columns in increasing order.

Ao IS8 20120124124
agdazlaalaolanloclo il ol J4
SPT3T3313230 128124124124

EIN P PR P Y T e e e A7
SHATA3 43 43 A5 454474

AP PN IPN PPN PPN PPN PPN DD

[y Y oo I 5 P PP PP P P
SToE 56678159 T60160 16

TRITTTTT5 72171168 ~
[ I L A L L A A A 00

7In.-nm\m\nn 5888989490
ITTITBOT80 8285881891891

Lemma

An array of size /n x /n is sorted after the iteration k = log, (v/n) + 1.

6/10



Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a) [> ais an array of size \/n x \/n
fork=1,.. do

L Sort rows in increasing and decreasing order alternatively;
L Sort columns in increasing order.

Lemma

An array of size /i x /n is sorted after the iteration k = log, (v/n) + 1.

Sketch of proof.

0|0|0Of|Of1|1|1f1|1]1

6/10



Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a) [> ais an array of size \/n x \/n
fork=1,.. do

L Sort rows in increasing and decreasing order alternatively;
L Sort columns in increasing order.

Lemma

An array of size /i x /n is sorted after the iteration k = log, (v/n) + 1.

Sketch of proof.

0j{0j0[0O|0O|OfO|OfO]|O

6/10



Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a) [> ais an array of size \/n x \/n
fork=1,.. do

L Sort rows in increasing and decreasing order alternatively;
L Sort columns in increasing order.

Lemma

An array of size /i x /n is sorted after the iteration k = log, (v/n) + 1.

Sketch of proof.

0j{0j0[0O|0O|OfO|OfO]|O 0[0|0f|Of1|1|1]|1(1

6/10



Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a) [> ais an array of size \/n x \/n
fork=1,.. do

L Sort rows in increasing and decreasing order alternatively;
L Sort columns in increasing order.

Lemma

An array of size /i x /n is sorted after the iteration k = log, (v/n) + 1.

Sketch of proof.

0j{0j0[0O|0O|OfO|OfO]|O 0[{0(0|0Of1|1[1|0]|0]|O

6/10



Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a) [> ais an array of size \/n x \/n
fork=1,.. do
Sort rows in increasing and decreasing order alternatively;
L Sort columns in increasing order.

Lemma

An array of size /i x /n is sorted after the iteration k = log, (v/n) + 1.

Sketch of proof.
0j0|0[0OfO[OfO|O]|O|O 0|0|0|0O|1[1(1]0|0|O
00 1 1 1|1(1(1]1|1
The number of “mixed” rows is halved after each iteration, hence log, (/n) iterations. O
Corollary

The SORTING problem on MCMCs can be solved in time O(y/n - logn) on arrays of size v/n x /.

6/10



Sorting on a d-dimensional Mesh-Connected MultiComputer
Snake ordering generalizes to higher dimensions:

60 59 52 51

35 /36 /43 /44 /|51
28 27 20 19 44
3 4 1 12 19 50
12 45
3 4 11 12 s 49
13 46
2 5 10 13 17 48
14 47
1 6 9 14 16
15

Theorem ([Corbett & Scherson, 1992]) \\

The SORTING problem on MCMCs can be solved in time O({/n-logn) on arrays of size {/n x -+ x ¢/n.
R TN YO

d times

7/10



Sorting on a d-dimensional Mesh-Connected MultiComputer
Snake ordering generalizes to higher dimensions:

60 59 52 51
35 /36 /43 /44 /|51
28 27 20 19 44

3 4 1 12 19 50
12 45

3 4 11 12 s 49
13 46

2 5 10 13 17 48
14 47

1 6 9 14

16

15

0 7 8 | 15

Theorem (fCorbett-8-Scherson; 1992} [Nassimi & Sahni, 1979]) \\
The SORTING problem on MCMCs can be solved in time O({/nleg#) on arrays of size {/n x -+ x {/n.

d times

7/10



Fast computing with tilings



The RAM model

-—| Definition 5

A Random Access Machine is composed of:
» A finite sequence of instructions called a program (and an instruction pointer addressing the in-
struction currently being executed);
» A finite set of variables vary, ..., var,, each containing an integer;
» A memory array M composed of infinitely many memory cells (M;);.y, each containing an integer.

Instructions are of two types:
» Arithmetic instructions on variables, e.g. var, - var; + vary;
» Memory instructions, either reading var; - M; or writing M, + var;.

8/10



The RAM model

-—| Definition 5

A Random Access Machine is composed of:
» A finite sequence of instructions called a program (and an instruction pointer addressing the in-
struction currently being executed);
» A finite set of variables vary, ..., var,, each containing an integer;
» A memory array M composed of infinitely many memory cells (M;);.y, each containing an integer.

Instructions are of two types:
» Arithmetic instructions on variables, e.g. var, - var; + vary;
» Memory instructions, either reading var; - M; or writing M, + var;.

Lemma

The RAM model is Turing-complete.

8/10



Simulating RAM computations with Mesh-Connected MultiComputers

Fix n € N. We simulate n computations steps of a RAM program p in an MCMC of size n:

9/10



Simulating RAM computations with Mesh-Connected MultiComputers

Fix n € N. We simulate n computations steps of a RAM program p in an MCMC of size n:

function FIBONACCI
> var, < 1;
varb<—1; —— —— —— ———— — —— ——
fori=1,...,10do
var, < var, + var,;
var, < var,;
var, < var,;
M; + var,;
var, < My;
var, < var, +4;

9/10



Simulating RAM computations with Mesh-Connected MultiComputers

Fix n € N. We simulate n computations steps of a RAM program p in an MCMC of size n:

function FIBONACCI
var, < 1;
| 2 varb<—1; —— —— —— ———— — —— ———
fori=1,...,10do
var, < var, + var,;
var, < var,;
var, < var,;
M; + var,;
var, < My;
var, < var, +4;

9/10



Simulating RAM computations with Mesh-Connected MultiComputers

Fix n € N. We simulate n computations steps of a RAM program p in an MCMC of size n:

function FIBONACCI
var, < 1;
varb<—1; —— —— —— ———— — —— ———
fori=1,...,10do
4 var, < var, + var,;
var, < var,;
var, < var,;
M; + var,;
var, < My;
var, < var, +4;

9/10



Simulating RAM computations with Mesh-Connected MultiComputers

Fix n € N. We simulate n computations steps of a RAM program p in an MCMC of size n:

function FIBONACCI
var, < 1;
varb<— 1; p——— p——N p——N p——N p—N p—N p—
fori=1,...,10do = = = = _— ]
var, < var, + var,;
> var, < var,;
var, < var,;
M; + var,;
var, < My;
var, < var, +4;

9/10



Simulating RAM computations with Mesh-Connected MultiComputers

Fix n € N. We simulate n computations steps of a RAM program p in an MCMC of size n:

function FIBONACCI

var, < 1;

var, « 13 g L L L L L L

fori=1,..,10do - == = == = =
var, < var, + var,; EUy=— Uy — Uy —
var, < var,;

> var, < var,;
M; + var,;

var, < My;

var, < var, +4;

9/10



Simulating RAM computations with Mesh-Connected MultiComputers

Fix n € N. We simulate n computations steps of a RAM program p in an MCMC of size n:

function FIBONACCI (addr = 1, time = 6, WRITE, value = 2)

var, < 1;

varb<—1; N N N s N N S

fori=1,...,10do = = = = =
var, < var, + var,;
var, < var;
var, < var,;

> M; < vary;

var, < My;

var, < var, +4;

9/10



Simulating RAM computations with Mesh-Connected MultiComputers

Fix n € N. We simulate n computations steps of a RAM program p in an MCMC of size n:

function FIBONACCI (addr = 1, time = 6, WRITE, value = 2)

var, < 1;
var, « 1; e
fori=1,..,10do 4 = | = B = = =
4 var, < var, + vary; EUly =y —
M M M M M M M

var, < var;

var, < var,;

M; + var,;
var, < My;
var, < var, +4;

9/10



Simulating RAM computations with Mesh-Connected MultiComputers

Fix n € N. We simulate n computations steps of a RAM program p in an MCMC of size n:

function FIBONACCI (addr = 10, time = 42, WRITE, value = 144)
var, < 1;

var, < 1; — — o — _— e —

fori=1,...,10do = = = = =
var, < var, + var,;
var, < var;
var, < var,;

> M; < vary;

var, < My;

var, < var, +4;

var, = 89
vary = 144 | var, = 144
var, = 144 | var, = 144

var, = 89

9/10



Simulating RAM computations with Mesh-Connected MultiComputers

Fix n € N. We simulate n computations steps of a RAM program p in an MCMC of size n:

(addr = 10, (addr = 10, time = 43, READ, value = 38)

function FIBONACCI
var, < 1;
var, « 13 g T L L L L L
fori=1,...,10do = = = = =
var, < var, + var,; = —]
var, < var,;
var, < var,;
M; + var,;
> var, < M;
var, < var, +4;

var, =89 || var, = 89 || var, = 89
vary = 144 | var, = 144 | var, = 144

var, = 144|(var, = 144 var, = 38

9/10



Simulating RAM computations with Mesh-Connected MultiComputers

Fix n € N. We simulate n computations steps of a RAM program p in an MCMC of size n:

(addr = 10, (addr = 10, time = 43, READ, value = 38)

function FIBONACCI
var, < 1;
varb<—1; I e T e T e —_— ——w. N =
fori=1,...,10do =
var, < var, + var,; = —1 — —] _ _ _
var, < var,;
var, + var,;

Mi, < var, var, =89 || var, = 89 || var, = 89 || var, = 89
var, < MIO; vary, = 144 || var;, = 144 |lvar;, = 144 | var, = 144
> | var, < var, +4; var, = 144 | var, = 144|l var, = 38 || var, = 42

9/10



Simulating RAM computations with Mesh-Connected MultiComputers

Fix n € N. We simulate n computations steps of a RAM program p in an MCMC of size n:

(addr = 10, (addr = 10, time = 43, READ, value = 38)

function FIBONACCI
var, < 1;
varb<—1; S —_— —_— —
fori=1,...,10do A == ] == | == =
var, < var, + var,; E EUY = = 1 ] 1
var, < var,;
var, + var,;

Mi, < var, var, =89 || var, = 89 || var, = 89 || var, = 89
var, < MIO; vary, = 144 || var;, = 144 |lvar;, = 144 | var, = 144
> | var, < var, +4; var, = 144 | var, = 144|l var, = 38 || var, = 42

At the end of the procedure, we have a list of records of the form:
» Writing records: (addr, time, WRITE, value);
» Reading records: (addr, time, READ, value);
By sorting this list in lexicographic order, we can check in time O(1) the consistency of the memory guesses!

9/10



Simulating RAM computations with Mesh-Connected MultiComputers

Fix n € N. We simulate n computations steps of a RAM program p in an MCMC of size n:

procedure
fori=1,...,ndo > Parallel time O(1).
The it" processor performs the i step of the program p.
If this computation step involves a reading a memory cell (resp. writing), the processor stores a memory record
(addr, time,READ, value) (resp. (addr, time, WRITE, value)).
Sort the memory records lexicographically. > Parallel time O(/n).
Check the consistency of the memory guesses. > Parallel time O(1).

9/10



Simulating RAM computations with Mesh-Connected MultiComputers

Fix n € N. We simulate n computations steps of a RAM program p in an MCMC of size n:

procedure
fori=1,..,ndo > Parallel time O(1).
The it" processor performs the i step of the program p.
If this computation step involves a reading a memory cell (resp. writing), the processor stores a memory record
(addr, time, READ, value) (resp. (addr, time, WRITE, value)).
Sort the memory records lexicographically. > Parallel time O(/n).
Check the consistency of the memory guesses. > Parallel time O(1).

Theorem

A cubic d-dimensional Mesh-Connected MultiComputer of edge length n can simulate n? steps of
RAM computations in time O(n).

9/10



Conclusion

Take-home message |

A 3-dimensional cube of size n x n x n can embed O(n?) steps of arbitrary RAM computations.

Actually, technical details:
» Integers appearing in the RAM computations should be “small enough” to fit in the memory of a single MCMC processor
(e.g. O(logn) bits): = word-RAM model;
» When implementing with Wang tiles, the colors should at least contain the state of an MCMC processor (e.g. O(logn) bits):
non-constant!

= Mesh-Connected MultiComputers are a natural computation model for the “fixpoint construction” (Durand,
Romaschenko and Shen).

Save the date!

What can we do with this? = Prove the soficity of many multidimensional subshifts!

(June, 24th in Caen)

10/10






	Introduction
	Mesh-Connected MultiComputers
	Fast computing with tilings

