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Turing machines

𝑞𝑎 𝑞𝑏 𝑞𝑐
0 ∣ 1,→

1 ∣ 1, ↓

0 ∣ 0,→

1 ∣ 1,→

0 ∣ 1,←

1 ∣ 1,←
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𝑞𝑎
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𝑞𝑐

0 1 0 0 0 0

𝑞𝑐

0 1 0 1 0 0

𝑞𝑐

0 1 1 1 0 0

𝑞𝑎

0 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 1

𝑞𝑐

1 1 1 1 1 1

𝑞𝑎

1 1 1 1 1 1

𝑞ℎ

1 1 1 1 1 1

In 2-dimensional tilings, we can embed arbitrary computations by drawing space-time diagrams:
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Main question

But what about higher dimensions? Space/time tradeoff?
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Definition

AMesh-Connected MultiComputer is an array of processors.

A processor:
▶ Contains finitely many variables;
▶ Can perform arithmetic operations on these variables;
▶ Can communicate with its immediate neighbors.

Consider the SORTING problem:
SORTING
Input: An array a of integers
Output: The array a sorted in increasing order

a = 43 61 36 3 94 66 21 48 64 4 12
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Sorting on aMesh-Connected MultiComputer

function EVEN-ODD SORT(𝑎) ▷ 𝑎 is an array of size 𝑛
for 𝑘 = 1,… do
if 𝑘 is even then
Compare (and swap if needed) every even position with its right neighbor;

else (𝑘 is odd)
Compare (and swap if needed) every odd position with its right neighbor.

𝑘 = 1

3 62 50 42 67 13 57 66 47 93 92 48 50

𝑘 = 2𝑘 = 3𝑘 = 4𝑘 = 5𝑘 = 6𝑘 = 7𝑘 = 8𝑘 = 8

Lemma

If the array a has size 𝑛, then it is sorted after the iteration 𝑘 = 𝑛 of EVEN-ODD SORT.
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Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

3 62 50 42 67 13 57 66 47 93
92 48 50 13 92 96 18 50 14 53
20 56 61 58 95 68 45 79 78 12
5 11 82 99 11 14 47 89 43 1
48 39 24 18 21 50 37 21 12 30
75 16 59 88 72 4 90 53 3 3
32 97 20 43 45 60 79 23 71 89
55 8 9 50 13 94 77 50 24 28
91 5 24 80 85 43 39 53 60 67
11 80 47 13 33 5 9 99 77 24

𝑘 = 1𝑘 = 2𝑘 = 3𝑘 = 4

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.
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(
√
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Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.
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An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
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The number of “mixed” rows is halved after each iteration, hence log
2
(
√
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Corollary

The SORTING problem on MCMCs can be solved in time 𝑂(
√
𝑛 ⋅ log𝑛) on arrays of size

√
𝑛×

√
𝑛.
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Sorting on a 𝑑-dimensional Mesh-Connected MultiComputer
Snake ordering generalizes to higher dimensions:
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4
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45
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44
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Theorem ([Corbett & Scherson, 1992])

The SORTING problem onMCMCs can be solved in time𝑂( 𝑑
√
𝑛⋅log𝑛) on arrays of size 𝑑

√
𝑛×⋯× 𝑑

√
𝑛⏟⏟⏟⏟⏟⏟⏟

𝑑 times

.
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Fast computing with tilings



The RAMmodel

Definition

A Random Access Machine is composed of:
▶ A finite sequence of instructions called a program (and an instruction pointer addressing the in-
struction currently being executed);

▶ A finite set of variables var1,… , var𝑘, each containing an integer;
▶ Amemory array𝑀 composed of infinitely manymemory cells (𝑀𝑖)𝑖∈ℕ, each containing an integer.

Instructions are of two types:
▶ Arithmetic instructions on variables, e.g. var𝑖 ← var𝑗 + var𝑘;
▶ Memory instructions, either reading var𝑖 ←𝑀𝑗 or writing𝑀𝑖 ← var𝑗.

Lemma

The RAMmodel is Turing-complete.
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Simulating RAM computations with Mesh-Connected MultiComputers

Fix 𝑛 ∈ ℕ. We simulate 𝑛 computations steps of a RAM program p in an MCMC of size 𝑛:
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Simulating RAM computations with Mesh-Connected MultiComputers

Fix 𝑛 ∈ ℕ. We simulate 𝑛 computations steps of a RAM program p in an MCMC of size 𝑛:

▶
function FIBONACCI

var𝑎 ← 1;
var𝑏 ← 1;
for 𝑖 = 1,… , 10 do

var𝑐 ← var𝑎 + var𝑏;
var𝑎 ← var𝑏;
var𝑏 ← var𝑐;
𝑀𝑖 ← var𝑏;

var𝑐 ← 𝑀10;
var𝑐 ← var𝑐 + 4;

var𝑎 = 1

var𝑎 = 1
var𝑏 = 1

var𝑎 = 1
var𝑏 = 1
var𝑐 = 2

var𝑎 = 1
var𝑏 = 1
var𝑐 = 2

var𝑎 = 1
var𝑏 = 2
var𝑐 = 2

(addr = 1, time = 6, WRITE, value = 2)

var𝑎 = 1
var𝑏 = 2
var𝑐 = 2

var𝑎 = 1
var𝑏 = 2
var𝑐 = 3

var𝑎 = 89
var𝑏 = 144
var𝑐 = 144

(addr = 10, time = 42, WRITE, value = 144)

var𝑎 = 89
var𝑏 = 144
var𝑐 = 144

(addr = 10, time = 43, READ, value = 38)

var𝑎 = 89
var𝑏 = 144
var𝑐 = 38

var𝑎 = 89
var𝑏 = 144
var𝑐 = 42

At the end of the procedure, we have a list of records of the form:
▶ Writing records: (addr, time, WRITE, value);
▶ Reading records: (addr, time, READ, value);

By sorting this list in lexicographic order, we can check in time 𝑂(1) the consistency of the memory guesses!
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Simulating RAM computations with Mesh-Connected MultiComputers

Fix 𝑛 ∈ ℕ. We simulate 𝑛 computations steps of a RAM program p in an MCMC of size 𝑛:

procedure
for 𝑖 = 1,… , 𝑛 do ▷ Parallel time 𝑂(1).
The 𝑖th processor performs the 𝑖th step of the program p.
If this computation step involves a reading a memory cell (resp. writing), the processor stores amemory record
(addr, time, READ, value) (resp. (addr, time, WRITE, value)).

Sort the memory records lexicographically. ▷ Parallel time 𝑂( 𝑑
√
𝑛).

Check the consistency of the memory guesses. ▷ Parallel time 𝑂(1).
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(addr, time, READ, value) (resp. (addr, time, WRITE, value)).

Sort the memory records lexicographically. ▷ Parallel time 𝑂( 𝑑
√
𝑛).

Check the consistency of the memory guesses. ▷ Parallel time 𝑂(1).

Theorem

A cubic 𝑑-dimensional Mesh-Connected MultiComputer of edge length 𝑛 can simulate 𝑛𝑑 steps of
RAM computations in time 𝑂(𝑛).
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Conclusion

Take-home message

A 3-dimensional cube of size 𝑛 × 𝑛 × 𝑛 can embed 𝑂(𝑛2) steps of arbitrary RAM computations.

Actually, technical details:
▶ Integers appearing in the RAM computations should be “small enough” to fit in the memory of a single MCMC processor
(e.g. 𝑂(log𝑛) bits): ⟹ word-RAMmodel;

▶ When implementing with Wang tiles, the colors should at least contain the state of an MCMC processor (e.g. 𝑂(log𝑛) bits):
non-constant!

⟹ Mesh-Connected MultiComputers are a natural computation model for the “fixpoint construction” (Durand,
Romaschenko and Shen).

Save the date!

What can we do with this? ⟹ Prove the soficity of many multidimensional subshifts!

(June, 24th in Caen)
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