Fast computations in higher-dimensional tilings
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In 2-dimensional tilings, we can embed arbitrary computations by drawing space-time diagrams:
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But what about higher dimensions? Space/time tradeoff?
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Definition

A Mesh-Connected MultiComputer is an array of processors.

t
A processor:
» Contains finitely many variables;
» Can perform arithmetic operations on these variables;
» Can communicate with its immediate neighbors.
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Sorting on a Mesh-Connected MultiComputer

function EVEN-ODD SORT(a)

fork=1,.. do
if k is even then

| Compare (and swap if needed) every even position with its right neighbor;

else (kis odd)

| Compare (and swap if needed) every odd position with its right neighbor.
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else (kis odd)
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Lemma
If the array a has size n, then it is sorted after the iteration k£ = n of EVEN-ODD SORT.

Sketch of proof.
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function EVEN-ODD SORT(a) [> a is an array of size n
fork=1,.. do
if k is even then
| Compare (and swap if needed) every even position with its right neighbor;

else (kis odd)
| Compare (and swap if needed) every odd position with its right neighbor.

92 | 93

42 | 47 | 48 | 50 | 50 | 57 | 62 | 66 | 67

k=8| 3 13

Lemma
If the array a has size n, then it is sorted after the iteration k£ = n of EVEN-ODD SORT.

Corollary
The SORTING problem on MCMCs can be solved in time O(n) on arrays of size n.
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Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a)
fork=1,.. do

L

Sort rows in increasing and decreasing order alternatively;

Sort columns in increasing order.
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function SNAKE SORT(a)
fork=1,.. do
Sort rows in increasing and decreasing order alternatively;
L Sort columns in increasing order.
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Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a) [> ais an array of size \/n x \/n
fork=1,.. do
Sort rows in increasing and decreasing order alternatively;
L Sort columns in increasing order.
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Lemma

An array of size /n x /n is sorted after the iteration k = log, (v/n) + 1.
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Sorting on a 2D Mesh-Connected MultiComputer

function SNAKE SORT(a) [> ais an array of size \/n x \/n
fork=1,.. do
Sort rows in increasing and decreasing order alternatively;
L Sort columns in increasing order.

Lemma

An array of size /i x /n is sorted after the iteration k = log, (v/n) + 1.

Sketch of proof.
0j0|0[0OfO[OfO|O]|O|O 0|0|0|0O|1[1(1]0|0|O
00 1 1 1|1(1(1]1|1
The number of “mixed” rows is halved after each iteration, hence log, (/n) iterations. O
Corollary

The SORTING problem on MCMCs can be solved in time O(y/n - logn) on arrays of size v/n x /.
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Sorting on a d-dimensional Mesh-Connected MultiComputer
Snake ordering generalizes to higher dimensions:

60 59 52 51

35 /36 /43 /44 /|51
28 27 20 19 44
3 4 1 12 19 50
12 45
3 4 11 12 s 49
13 46
2 5 10 13 17 48
14 47
1 6 9 14 16
15

Theorem ([Corbett & Scherson, 1992]) \\

The SORTING problem on MCMCs can be solved in time O({/n-logn) on arrays of size {/n x -+ x ¢/n.
R TN YO

d times
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Fast computing with tilings



The RAM model

-—| Definition 5

A Random Access Machine is composed of:
» A finite sequence of instructions called a program (and an instruction pointer addressing the in-
struction currently being executed);
» A finite set of variables vary, ..., var,, each containing an integer;
» A memory array M composed of infinitely many memory cells (M;);.y, each containing an integer.

Instructions are of two types:
» Arithmetic instructions on variables, e.g. var, - var; + vary;
» Memory instructions, either reading var; - M; or writing M, + var;.
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struction currently being executed);
» A finite set of variables vary, ..., var,, each containing an integer;
» A memory array M composed of infinitely many memory cells (M;);.y, each containing an integer.

Instructions are of two types:
» Arithmetic instructions on variables, e.g. var, - var; + vary;
» Memory instructions, either reading var; - M; or writing M, + var;.

Lemma

The RAM model is Turing-complete.
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Simulating RAM computations with Mesh-Connected MultiComputers

Fix n € N. We simulate n computations steps of a RAM program p in an MCMC of size n:
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Simulating RAM computations with Mesh-Connected MultiComputers

Fix n € N. We simulate n computations steps of a RAM program p in an MCMC of size n:

function FIBONACCI (addr = 10, time = 42, WRITE, value = 144)
var, < 1;

var, < 1; — — o — _— e —

fori=1,...,10do = = = = =
var, < var, + var,;
var, < var;
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var, < var, +4;

var, = 89
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var, = 89
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At the end of the procedure, we have a list of records of the form:
» Writing records: (addr, time, WRITE, value);
» Reading records: (addr, time, READ, value);
By sorting this list in lexicographic order, we can check in time O(1) the consistency of the memory guesses!
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The it" processor performs the i step of the program p.
If this computation step involves a reading a memory cell (resp. writing), the processor stores a memory record
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Fix n € N. We simulate n computations steps of a RAM program p in an MCMC of size n:

procedure
fori=1,..,ndo > Parallel time O(1).
The it" processor performs the i step of the program p.
If this computation step involves a reading a memory cell (resp. writing), the processor stores a memory record
(addr, time, READ, value) (resp. (addr, time, WRITE, value)).
Sort the memory records lexicographically. > Parallel time O(/n).
Check the consistency of the memory guesses. > Parallel time O(1).

Theorem

A cubic d-dimensional Mesh-Connected MultiComputer of edge length n can simulate n? steps of
RAM computations in time O(n).
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Conclusion

Take-home message |

A 3-dimensional cube of size n x n x n can embed O(n?) steps of arbitrary RAM computations.

Actually, technical details:
» Integers appearing in the RAM computations should be “small enough” to fit in the memory of a single MCMC processor
(e.g. O(logn) bits): = word-RAM model;
» When implementing with Wang tiles, the colors should at least contain the state of an MCMC processor (e.g. O(logn) bits):
non-constant!

= Mesh-Connected MultiComputers are a natural computation model for the “fixpoint construction” (Durand,
Romaschenko and Shen).

Save the date!

What can we do with this? = Prove the soficity of many multidimensional subshifts!

(June, 24th in Caen)
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