
Fast computations in higher-dimensional tilings

Antonin Callard

Journées SDA2 2025 – Montpellier

1 / 10

Turing machines

𝑞𝑎 𝑞𝑏 𝑞𝑐
0 ∣ 1,→

1 ∣ 1, ↓

0 ∣ 0,→

1 ∣ 1,→

0 ∣ 1,←

1 ∣ 1,←

0 0 0 0

𝑞𝑎

0 0 0 0 0 0

𝑞𝑏

0 1 0 0 0 0

𝑞𝑐

0 1 0 0 0 0

𝑞𝑐

0 1 0 1 0 0

𝑞𝑐

0 1 1 1 0 0

𝑞𝑎

0 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 1

𝑞𝑐

1 1 1 1 1 1

𝑞𝑎

1 1 1 1 1 1

𝑞ℎ

1 1 1 1 1 1

In 2-dimensional tilings, we can embed arbitrary computations by drawing space-time diagrams:

time

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 1 0 0

0 1 1 1 0 0

0 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

Main question

But what about higher dimensions? Space/time tradeoff?

2 / 10

Turing machines

𝑞𝑎 𝑞𝑏 𝑞𝑐
0 ∣ 1,→

1 ∣ 1, ↓

0 ∣ 0,→

1 ∣ 1,→

0 ∣ 1,←

1 ∣ 1,←

0 0 0 0

𝑞𝑎

0 0 0 0 0 0

𝑞𝑏

0 1 0 0 0 0

𝑞𝑐

0 1 0 0 0 0

𝑞𝑐

0 1 0 1 0 0

𝑞𝑐

0 1 1 1 0 0

𝑞𝑎

0 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 1

𝑞𝑐

1 1 1 1 1 1

𝑞𝑎

1 1 1 1 1 1

𝑞ℎ

1 1 1 1 1 1

In 2-dimensional tilings, we can embed arbitrary computations by drawing space-time diagrams:

time

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 1 0 0

0 1 1 1 0 0

0 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

Main question

But what about higher dimensions? Space/time tradeoff?

2 / 10

Turing machines

𝑞𝑎 𝑞𝑏 𝑞𝑐
0 ∣ 1,→

1 ∣ 1, ↓

0 ∣ 0,→

1 ∣ 1,→

0 ∣ 1,←

1 ∣ 1,←

0 0 0 0

𝑞𝑎

0 0 0 0 0 0

𝑞𝑏

0 1 0 0 0 0

𝑞𝑐

0 1 0 0 0 0

𝑞𝑐

0 1 0 1 0 0

𝑞𝑐

0 1 1 1 0 0

𝑞𝑎

0 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 1

𝑞𝑐

1 1 1 1 1 1

𝑞𝑎

1 1 1 1 1 1

𝑞ℎ

1 1 1 1 1 1

In 2-dimensional tilings, we can embed arbitrary computations by drawing space-time diagrams:

time

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 1 0 0

0 1 1 1 0 0

0 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

Main question

But what about higher dimensions? Space/time tradeoff?

2 / 10

Turing machines

𝑞𝑎 𝑞𝑏 𝑞𝑐
0 ∣ 1,→

1 ∣ 1, ↓

0 ∣ 0,→

1 ∣ 1,→

0 ∣ 1,←

1 ∣ 1,←

0 0 0 0

𝑞𝑎

0 0 0 0 0 0

𝑞𝑏

0 1 0 0 0 0

𝑞𝑐

0 1 0 0 0 0

𝑞𝑐

0 1 0 1 0 0

𝑞𝑐

0 1 1 1 0 0

𝑞𝑎

0 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 1

𝑞𝑐

1 1 1 1 1 1

𝑞𝑎

1 1 1 1 1 1

𝑞ℎ

1 1 1 1 1 1

In 2-dimensional tilings, we can embed arbitrary computations by drawing space-time diagrams:

time

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 1 0 0

0 1 1 1 0 0

0 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

Main question

But what about higher dimensions? Space/time tradeoff?

2 / 10

Turing machines

𝑞𝑎 𝑞𝑏 𝑞𝑐
0 ∣ 1,→

1 ∣ 1, ↓

0 ∣ 0,→

1 ∣ 1,→

0 ∣ 1,←

1 ∣ 1,←

0 0 0 0

𝑞𝑎

0 0 0 0 0 0

𝑞𝑏

0 1 0 0 0 0

𝑞𝑐

0 1 0 0 0 0

𝑞𝑐

0 1 0 1 0 0

𝑞𝑐

0 1 1 1 0 0

𝑞𝑎

0 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 1

𝑞𝑐

1 1 1 1 1 1

𝑞𝑎

1 1 1 1 1 1

𝑞ℎ

1 1 1 1 1 1

In 2-dimensional tilings, we can embed arbitrary computations by drawing space-time diagrams:

time

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 1 0 0

0 1 1 1 0 0

0 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

Main question

But what about higher dimensions? Space/time tradeoff?

2 / 10

Turing machines

𝑞𝑎 𝑞𝑏 𝑞𝑐
0 ∣ 1,→

1 ∣ 1, ↓

0 ∣ 0,→

1 ∣ 1,→

0 ∣ 1,←

1 ∣ 1,←

0 0 0 0

𝑞𝑎

0 0 0 0 0 0

𝑞𝑏

0 1 0 0 0 0

𝑞𝑐

0 1 0 0 0 0

𝑞𝑐

0 1 0 1 0 0

𝑞𝑐

0 1 1 1 0 0

𝑞𝑎

0 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 1

𝑞𝑐

1 1 1 1 1 1

𝑞𝑎

1 1 1 1 1 1

𝑞ℎ

1 1 1 1 1 1

In 2-dimensional tilings, we can embed arbitrary computations by drawing space-time diagrams:

time

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 1 0 0

0 1 1 1 0 0

0 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

Main question

But what about higher dimensions? Space/time tradeoff?

2 / 10

Turing machines

𝑞𝑎 𝑞𝑏 𝑞𝑐
0 ∣ 1,→

1 ∣ 1, ↓

0 ∣ 0,→

1 ∣ 1,→

0 ∣ 1,←

1 ∣ 1,←

0 0 0 0

𝑞𝑎

0 0 0 0 0 0

𝑞𝑏

0 1 0 0 0 0

𝑞𝑐

0 1 0 0 0 0

𝑞𝑐

0 1 0 1 0 0

𝑞𝑐

0 1 1 1 0 0

𝑞𝑎

0 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 1

𝑞𝑐

1 1 1 1 1 1

𝑞𝑎

1 1 1 1 1 1

𝑞ℎ

1 1 1 1 1 1

In 2-dimensional tilings, we can embed arbitrary computations by drawing space-time diagrams:

time

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 1 0 0

0 1 1 1 0 0

0 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

Main question

But what about higher dimensions? Space/time tradeoff?

2 / 10

Turing machines

𝑞𝑎 𝑞𝑏 𝑞𝑐
0 ∣ 1,→

1 ∣ 1, ↓

0 ∣ 0,→

1 ∣ 1,→

0 ∣ 1,←

1 ∣ 1,←

0 0 0 0

𝑞𝑎

0 0 0 0 0 0

𝑞𝑏

0 1 0 0 0 0

𝑞𝑐

0 1 0 0 0 0

𝑞𝑐

0 1 0 1 0 0

𝑞𝑐

0 1 1 1 0 0

𝑞𝑎

0 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 1

𝑞𝑐

1 1 1 1 1 1

𝑞𝑎

1 1 1 1 1 1

𝑞ℎ

1 1 1 1 1 1

In 2-dimensional tilings, we can embed arbitrary computations by drawing space-time diagrams:

time

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 1 0 0

0 1 1 1 0 0

0 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

Main question

But what about higher dimensions? Space/time tradeoff?

2 / 10

Turing machines

𝑞𝑎 𝑞𝑏 𝑞𝑐
0 ∣ 1,→

1 ∣ 1, ↓

0 ∣ 0,→

1 ∣ 1,→

0 ∣ 1,←

1 ∣ 1,←

0 0 0 0

𝑞𝑎

0 0 0 0 0 0

𝑞𝑏

0 1 0 0 0 0

𝑞𝑐

0 1 0 0 0 0

𝑞𝑐

0 1 0 1 0 0

𝑞𝑐

0 1 1 1 0 0

𝑞𝑎

0 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 1

𝑞𝑐

1 1 1 1 1 1

𝑞𝑎

1 1 1 1 1 1

𝑞ℎ

1 1 1 1 1 1

In 2-dimensional tilings, we can embed arbitrary computations by drawing space-time diagrams:

time

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 1 0 0

0 1 1 1 0 0

0 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

Main question

But what about higher dimensions? Space/time tradeoff?

2 / 10

Turing machines

𝑞𝑎 𝑞𝑏 𝑞𝑐
0 ∣ 1,→

1 ∣ 1, ↓

0 ∣ 0,→

1 ∣ 1,→

0 ∣ 1,←

1 ∣ 1,←

0 0 0 0

𝑞𝑎

0 0 0 0 0 0

𝑞𝑏

0 1 0 0 0 0

𝑞𝑐

0 1 0 0 0 0

𝑞𝑐

0 1 0 1 0 0

𝑞𝑐

0 1 1 1 0 0

𝑞𝑎

0 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 1

𝑞𝑐

1 1 1 1 1 1

𝑞𝑎

1 1 1 1 1 1

𝑞ℎ

1 1 1 1 1 1

In 2-dimensional tilings, we can embed arbitrary computations by drawing space-time diagrams:

time

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 1 0 0

0 1 1 1 0 0

0 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

Main question

But what about higher dimensions? Space/time tradeoff?

2 / 10

Turing machines

𝑞𝑎 𝑞𝑏 𝑞𝑐
0 ∣ 1,→

1 ∣ 1, ↓

0 ∣ 0,→

1 ∣ 1,→

0 ∣ 1,←

1 ∣ 1,←

0 0 0 0

𝑞𝑎

0 0 0 0 0 0

𝑞𝑏

0 1 0 0 0 0

𝑞𝑐

0 1 0 0 0 0

𝑞𝑐

0 1 0 1 0 0

𝑞𝑐

0 1 1 1 0 0

𝑞𝑎

0 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 1

𝑞𝑐

1 1 1 1 1 1

𝑞𝑎

1 1 1 1 1 1

𝑞ℎ

1 1 1 1 1 1

In 2-dimensional tilings, we can embed arbitrary computations by drawing space-time diagrams:

time

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 1 0 0

0 1 1 1 0 0

0 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

Main question

But what about higher dimensions? Space/time tradeoff?

2 / 10

Turing machines

𝑞𝑎 𝑞𝑏 𝑞𝑐
0 ∣ 1,→

1 ∣ 1, ↓

0 ∣ 0,→

1 ∣ 1,→

0 ∣ 1,←

1 ∣ 1,←

0 0 0 0

𝑞𝑎

0 0 0 0 0 0

𝑞𝑏

0 1 0 0 0 0

𝑞𝑐

0 1 0 0 0 0

𝑞𝑐

0 1 0 1 0 0

𝑞𝑐

0 1 1 1 0 0

𝑞𝑎

0 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 1

𝑞𝑐

1 1 1 1 1 1

𝑞𝑎

1 1 1 1 1 1

𝑞ℎ

1 1 1 1 1 1

In 2-dimensional tilings, we can embed arbitrary computations by drawing space-time diagrams:

time

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 1 0 0

0 1 1 1 0 0

0 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

Main question

But what about higher dimensions? Space/time tradeoff?

2 / 10

Turing machines

𝑞𝑎 𝑞𝑏 𝑞𝑐
0 ∣ 1,→

1 ∣ 1, ↓

0 ∣ 0,→

1 ∣ 1,→

0 ∣ 1,←

1 ∣ 1,←

0 0 0 0

𝑞𝑎

0 0 0 0 0 0

𝑞𝑏

0 1 0 0 0 0

𝑞𝑐

0 1 0 0 0 0

𝑞𝑐

0 1 0 1 0 0

𝑞𝑐

0 1 1 1 0 0

𝑞𝑎

0 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 1

𝑞𝑐

1 1 1 1 1 1

𝑞𝑎

1 1 1 1 1 1

𝑞ℎ

1 1 1 1 1 1

In 2-dimensional tilings, we can embed arbitrary computations by drawing space-time diagrams:

time

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 1 0 0

0 1 1 1 0 0

0 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

Main question

But what about higher dimensions? Space/time tradeoff?

2 / 10

Turing machines

𝑞𝑎 𝑞𝑏 𝑞𝑐
0 ∣ 1,→

1 ∣ 1, ↓

0 ∣ 0,→

1 ∣ 1,→

0 ∣ 1,←

1 ∣ 1,←

0 0 0 0

𝑞𝑎

0 0 0 0 0 0

𝑞𝑏

0 1 0 0 0 0

𝑞𝑐

0 1 0 0 0 0

𝑞𝑐

0 1 0 1 0 0

𝑞𝑐

0 1 1 1 0 0

𝑞𝑎

0 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 1

𝑞𝑐

1 1 1 1 1 1

𝑞𝑎

1 1 1 1 1 1

𝑞ℎ

1 1 1 1 1 1

In 2-dimensional tilings, we can embed arbitrary computations by drawing space-time diagrams:

time

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 1 0 0

0 1 1 1 0 0

0 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

Main question

But what about higher dimensions? Space/time tradeoff?

2 / 10

Turing machines

𝑞𝑎 𝑞𝑏 𝑞𝑐
0 ∣ 1,→

1 ∣ 1, ↓

0 ∣ 0,→

1 ∣ 1,→

0 ∣ 1,←

1 ∣ 1,←

0 0 0 0

𝑞𝑎

0 0 0 0 0 0

𝑞𝑏

0 1 0 0 0 0

𝑞𝑐

0 1 0 0 0 0

𝑞𝑐

0 1 0 1 0 0

𝑞𝑐

0 1 1 1 0 0

𝑞𝑎

0 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 1

𝑞𝑐

1 1 1 1 1 1

𝑞𝑎

1 1 1 1 1 1

𝑞ℎ

1 1 1 1 1 1

In 2-dimensional tilings, we can embed arbitrary computations by drawing space-time diagrams:

time

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 1 0 0

0 1 1 1 0 0

0 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

Main question

But what about higher dimensions? Space/time tradeoff?

2 / 10

Turing machines

𝑞𝑎 𝑞𝑏 𝑞𝑐
0 ∣ 1,→

1 ∣ 1, ↓

0 ∣ 0,→

1 ∣ 1,→

0 ∣ 1,←

1 ∣ 1,←

0 0 0 0

𝑞𝑎

0 0 0 0 0 0

𝑞𝑏

0 1 0 0 0 0

𝑞𝑐

0 1 0 0 0 0

𝑞𝑐

0 1 0 1 0 0

𝑞𝑐

0 1 1 1 0 0

𝑞𝑎

0 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑏

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 0

𝑞𝑐

1 1 1 1 0 1

𝑞𝑐

1 1 1 1 1 1

𝑞𝑎

1 1 1 1 1 1

𝑞ℎ

1 1 1 1 1 1

In 2-dimensional tilings, we can embed arbitrary computations by drawing space-time diagrams:

time

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 1 0 0

0 1 1 1 0 0

0 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

Main question

But what about higher dimensions? Space/time tradeoff?

2 / 10

Mesh-Connected MultiComputers

Mesh-Connected MultiComputers

43 61 36 3 94 66 21 48 64 4 12

3 4 12 21 36 43 48 61 64 66 94

Definition

AMesh-Connected MultiComputer is an array of processors.

A processor:
▶ Contains finitely many variables;
▶ Can perform arithmetic operations on these variables;
▶ Can communicate with its immediate neighbors.

Consider the SORTING problem:
SORTING
Input: An array a of integers
Output: The array a sorted in increasing order

a = 43 61 36 3 94 66 21 48 64 4 12

3 / 10

Mesh-Connected MultiComputers

43 61 36 3 94 66 21 48 64 4 12

3 4 12 21 36 43 48 61 64 66 94

Definition

AMesh-Connected MultiComputer is an array of processors.

A processor:
▶ Contains finitely many variables;
▶ Can perform arithmetic operations on these variables;
▶ Can communicate with its immediate neighbors.

Consider the SORTING problem:
SORTING
Input: An array a of integers
Output: The array a sorted in increasing order

a = 43 61 36 3 94 66 21 48 64 4 12

3 / 10

Mesh-Connected MultiComputers

43 61 36 3 94 66 21 48 64 4 12

3 4 12 21 36 43 48 61 64 66 94

Definition

AMesh-Connected MultiComputer is an array of processors.

A processor:
▶ Contains finitely many variables;
▶ Can perform arithmetic operations on these variables;
▶ Can communicate with its immediate neighbors.

Consider the SORTING problem:
SORTING
Input: An array a of integers
Output: The array a sorted in increasing order

a = 43 61 36 3 94 66 21 48 64 4 12

3 / 10

Mesh-Connected MultiComputers

43 61 36 3 94 66 21 48 64 4 12

3 4 12 21 36 43 48 61 64 66 94

Definition

AMesh-Connected MultiComputer is an array of processors.

A processor:
▶ Contains finitely many variables;
▶ Can perform arithmetic operations on these variables;
▶ Can communicate with its immediate neighbors.

Consider the SORTING problem:
SORTING
Input: An array a of integers
Output: The array a sorted in increasing order

a = 43 61 36 3 94 66 21 48 64 4 12

3 / 10

Mesh-Connected MultiComputers

43 61 36 3 94 66 21 48 64 4 12

3 4 12 21 36 43 48 61 64 66 94

Definition

AMesh-Connected MultiComputer is an array of processors.

A processor:
▶ Contains finitely many variables;
▶ Can perform arithmetic operations on these variables;
▶ Can communicate with its immediate neighbors.

Consider the SORTING problem:
SORTING
Input: An array a of integers
Output: The array a sorted in increasing order

a = 43 61 36 3 94 66 21 48 64 4 12

3 / 10

Mesh-Connected MultiComputers

43 61 36 3 94 66 21 48 64 4 12

3 4 12 21 36 43 48 61 64 66 94

Definition

AMesh-Connected MultiComputer is an array of processors.

A processor:
▶ Contains finitely many variables;
▶ Can perform arithmetic operations on these variables;
▶ Can communicate with its immediate neighbors.

Consider the SORTING problem:
SORTING
Input: An array a of integers
Output: The array a sorted in increasing order

a = 43 61 36 3 94 66 21 48 64 4 12

3 / 10

Mesh-Connected MultiComputers

43 61 36 3 94 66 21 48 64 4 12

3 4 12 21 36 43 48 61 64 66 94

Definition

AMesh-Connected MultiComputer is an array of processors.

A processor:
▶ Contains finitely many variables;
▶ Can perform arithmetic operations on these variables;
▶ Can communicate with its immediate neighbors.

Consider the SORTING problem:
SORTING
Input: An array a of integers
Output: The array a sorted in increasing order

a = 43 61 36 3 94 66 21 48 64 4 12

3 / 10

Mesh-Connected MultiComputers

43 61 36 3 94 66 21 48 64 4 12

3 4 12 21 36 43 48 61 64 66 94

Definition

AMesh-Connected MultiComputer is an array of processors.

A processor:
▶ Contains finitely many variables;
▶ Can perform arithmetic operations on these variables;
▶ Can communicate with its immediate neighbors.

Consider the SORTING problem:
SORTING
Input: An array a of integers
Output: The array a sorted in increasing order

a = 43 61 36 3 94 66 21 48 64 4 12

3 / 10

Mesh-Connected MultiComputers

43 61 36 3 94 66 21 48 64 4 12

3 4 12 21 36 43 48 61 64 66 94

Definition

AMesh-Connected MultiComputer is an array of processors.

A processor:
▶ Contains finitely many variables;
▶ Can perform arithmetic operations on these variables;
▶ Can communicate with its immediate neighbors.

Consider the SORTING problem:
SORTING
Input: An array a of integers
Output: The array a sorted in increasing order

a = 43 61 36 3 94 66 21 48 64 4 12

3 / 10

Mesh-Connected MultiComputers

43 61 36 3 94 66 21 48 64 4 12

3 4 12 21 36 43 48 61 64 66 94

Definition

AMesh-Connected MultiComputer is an array of processors.

A processor:
▶ Contains finitely many variables;
▶ Can perform arithmetic operations on these variables;
▶ Can communicate with its immediate neighbors.

Consider the SORTING problem:
SORTING
Input: An array a of integers
Output: The array a sorted in increasing order

a = 43 61 36 3 94 66 21 48 64 4 12

3 / 10

Sorting on aMesh-Connected MultiComputer

function EVEN-ODD SORT(𝑎) ▷ 𝑎 is an array of size 𝑛
for 𝑘 = 1,… do
if 𝑘 is even then
Compare (and swap if needed) every even position with its right neighbor;

else (𝑘 is odd)
Compare (and swap if needed) every odd position with its right neighbor.

𝑘 = 1

3 62 50 42 67 13 57 66 47 93 92 48 50

𝑘 = 2𝑘 = 3𝑘 = 4𝑘 = 5𝑘 = 6𝑘 = 7𝑘 = 8𝑘 = 8

Lemma

If the array a has size 𝑛, then it is sorted after the iteration 𝑘 = 𝑛 of EVEN-ODD SORT.

4 / 10

Sorting on aMesh-Connected MultiComputer

function EVEN-ODD SORT(𝑎) ▷ 𝑎 is an array of size 𝑛
for 𝑘 = 1,… do
if 𝑘 is even then
Compare (and swap if needed) every even position with its right neighbor;

else (𝑘 is odd)
Compare (and swap if needed) every odd position with its right neighbor.

𝑘 = 1 3 62 50 42 67 13 57 66 47 93 92 48 50

𝑘 = 2𝑘 = 3𝑘 = 4𝑘 = 5𝑘 = 6𝑘 = 7𝑘 = 8𝑘 = 8

Lemma

If the array a has size 𝑛, then it is sorted after the iteration 𝑘 = 𝑛 of EVEN-ODD SORT.

4 / 10

Sorting on aMesh-Connected MultiComputer

function EVEN-ODD SORT(𝑎) ▷ 𝑎 is an array of size 𝑛
for 𝑘 = 1,… do
if 𝑘 is even then
Compare (and swap if needed) every even position with its right neighbor;

else (𝑘 is odd)
Compare (and swap if needed) every odd position with its right neighbor.

𝑘 = 1

𝑘 = 2

3 50 62 42 67 13 57 47 66 92 93 48 50

𝑘 = 3𝑘 = 4𝑘 = 5𝑘 = 6𝑘 = 7𝑘 = 8𝑘 = 8

Lemma

If the array a has size 𝑛, then it is sorted after the iteration 𝑘 = 𝑛 of EVEN-ODD SORT.

4 / 10

Sorting on aMesh-Connected MultiComputer

function EVEN-ODD SORT(𝑎) ▷ 𝑎 is an array of size 𝑛
for 𝑘 = 1,… do
if 𝑘 is even then
Compare (and swap if needed) every even position with its right neighbor;

else (𝑘 is odd)
Compare (and swap if needed) every odd position with its right neighbor.

𝑘 = 1

𝑘 = 2 3 50 62 42 67 13 57 47 66 92 93 48 50

𝑘 = 3𝑘 = 4𝑘 = 5𝑘 = 6𝑘 = 7𝑘 = 8𝑘 = 8

Lemma

If the array a has size 𝑛, then it is sorted after the iteration 𝑘 = 𝑛 of EVEN-ODD SORT.

4 / 10

Sorting on aMesh-Connected MultiComputer

function EVEN-ODD SORT(𝑎) ▷ 𝑎 is an array of size 𝑛
for 𝑘 = 1,… do
if 𝑘 is even then
Compare (and swap if needed) every even position with its right neighbor;

else (𝑘 is odd)
Compare (and swap if needed) every odd position with its right neighbor.

𝑘 = 1

𝑘 = 2

𝑘 = 3

3 50 42 62 13 67 47 57 66 92 48 93 50

𝑘 = 4𝑘 = 5𝑘 = 6𝑘 = 7𝑘 = 8𝑘 = 8

Lemma

If the array a has size 𝑛, then it is sorted after the iteration 𝑘 = 𝑛 of EVEN-ODD SORT.

4 / 10

Sorting on aMesh-Connected MultiComputer

function EVEN-ODD SORT(𝑎) ▷ 𝑎 is an array of size 𝑛
for 𝑘 = 1,… do
if 𝑘 is even then
Compare (and swap if needed) every even position with its right neighbor;

else (𝑘 is odd)
Compare (and swap if needed) every odd position with its right neighbor.

𝑘 = 1𝑘 = 2

𝑘 = 3 3 50 42 62 13 67 47 57 66 92 48 93 50

𝑘 = 4𝑘 = 5𝑘 = 6𝑘 = 7𝑘 = 8𝑘 = 8

Lemma

If the array a has size 𝑛, then it is sorted after the iteration 𝑘 = 𝑛 of EVEN-ODD SORT.

4 / 10

Sorting on aMesh-Connected MultiComputer

function EVEN-ODD SORT(𝑎) ▷ 𝑎 is an array of size 𝑛
for 𝑘 = 1,… do
if 𝑘 is even then
Compare (and swap if needed) every even position with its right neighbor;

else (𝑘 is odd)
Compare (and swap if needed) every odd position with its right neighbor.

𝑘 = 1𝑘 = 2

𝑘 = 3

𝑘 = 4

3 42 50 13 62 47 67 57 66 48 92 50 93

𝑘 = 5𝑘 = 6𝑘 = 7𝑘 = 8𝑘 = 8

Lemma

If the array a has size 𝑛, then it is sorted after the iteration 𝑘 = 𝑛 of EVEN-ODD SORT.

4 / 10

Sorting on aMesh-Connected MultiComputer

function EVEN-ODD SORT(𝑎) ▷ 𝑎 is an array of size 𝑛
for 𝑘 = 1,… do
if 𝑘 is even then
Compare (and swap if needed) every even position with its right neighbor;

else (𝑘 is odd)
Compare (and swap if needed) every odd position with its right neighbor.

𝑘 = 1𝑘 = 2𝑘 = 3

𝑘 = 4 3 42 50 13 62 47 67 57 66 48 92 50 93

𝑘 = 5𝑘 = 6𝑘 = 7𝑘 = 8𝑘 = 8

Lemma

If the array a has size 𝑛, then it is sorted after the iteration 𝑘 = 𝑛 of EVEN-ODD SORT.

4 / 10

Sorting on aMesh-Connected MultiComputer

function EVEN-ODD SORT(𝑎) ▷ 𝑎 is an array of size 𝑛
for 𝑘 = 1,… do
if 𝑘 is even then
Compare (and swap if needed) every even position with its right neighbor;

else (𝑘 is odd)
Compare (and swap if needed) every odd position with its right neighbor.

𝑘 = 1𝑘 = 2𝑘 = 3

𝑘 = 4

𝑘 = 5

3 42 13 50 47 62 57 67 48 66 50 92 93

𝑘 = 6𝑘 = 7𝑘 = 8𝑘 = 8

Lemma

If the array a has size 𝑛, then it is sorted after the iteration 𝑘 = 𝑛 of EVEN-ODD SORT.

4 / 10

Sorting on aMesh-Connected MultiComputer

function EVEN-ODD SORT(𝑎) ▷ 𝑎 is an array of size 𝑛
for 𝑘 = 1,… do
if 𝑘 is even then
Compare (and swap if needed) every even position with its right neighbor;

else (𝑘 is odd)
Compare (and swap if needed) every odd position with its right neighbor.

𝑘 = 1𝑘 = 2𝑘 = 3𝑘 = 4

𝑘 = 5 3 42 13 50 47 62 57 67 48 66 50 92 93

𝑘 = 6𝑘 = 7𝑘 = 8𝑘 = 8

Lemma

If the array a has size 𝑛, then it is sorted after the iteration 𝑘 = 𝑛 of EVEN-ODD SORT.

4 / 10

Sorting on aMesh-Connected MultiComputer

function EVEN-ODD SORT(𝑎) ▷ 𝑎 is an array of size 𝑛
for 𝑘 = 1,… do
if 𝑘 is even then
Compare (and swap if needed) every even position with its right neighbor;

else (𝑘 is odd)
Compare (and swap if needed) every odd position with its right neighbor.

𝑘 = 1𝑘 = 2𝑘 = 3𝑘 = 4

𝑘 = 5

𝑘 = 6

3 13 42 47 50 57 62 48 67 50 66 92 93

𝑘 = 7𝑘 = 8𝑘 = 8

Lemma

If the array a has size 𝑛, then it is sorted after the iteration 𝑘 = 𝑛 of EVEN-ODD SORT.

4 / 10

Sorting on aMesh-Connected MultiComputer

function EVEN-ODD SORT(𝑎) ▷ 𝑎 is an array of size 𝑛
for 𝑘 = 1,… do
if 𝑘 is even then
Compare (and swap if needed) every even position with its right neighbor;

else (𝑘 is odd)
Compare (and swap if needed) every odd position with its right neighbor.

𝑘 = 1𝑘 = 2𝑘 = 3𝑘 = 4𝑘 = 5

𝑘 = 6 3 13 42 47 50 57 62 48 67 50 66 92 93

𝑘 = 7𝑘 = 8𝑘 = 8

Lemma

If the array a has size 𝑛, then it is sorted after the iteration 𝑘 = 𝑛 of EVEN-ODD SORT.

4 / 10

Sorting on aMesh-Connected MultiComputer

function EVEN-ODD SORT(𝑎) ▷ 𝑎 is an array of size 𝑛
for 𝑘 = 1,… do
if 𝑘 is even then
Compare (and swap if needed) every even position with its right neighbor;

else (𝑘 is odd)
Compare (and swap if needed) every odd position with its right neighbor.

𝑘 = 1𝑘 = 2𝑘 = 3𝑘 = 4𝑘 = 5

𝑘 = 6

𝑘 = 7

3 13 42 47 50 57 48 62 50 67 66 92 93

𝑘 = 8𝑘 = 8

Lemma

If the array a has size 𝑛, then it is sorted after the iteration 𝑘 = 𝑛 of EVEN-ODD SORT.

4 / 10

Sorting on aMesh-Connected MultiComputer

function EVEN-ODD SORT(𝑎) ▷ 𝑎 is an array of size 𝑛
for 𝑘 = 1,… do
if 𝑘 is even then
Compare (and swap if needed) every even position with its right neighbor;

else (𝑘 is odd)
Compare (and swap if needed) every odd position with its right neighbor.

𝑘 = 1𝑘 = 2𝑘 = 3𝑘 = 4𝑘 = 5𝑘 = 6

𝑘 = 7 3 13 42 47 50 57 48 62 50 67 66 92 93

𝑘 = 8𝑘 = 8

Lemma

If the array a has size 𝑛, then it is sorted after the iteration 𝑘 = 𝑛 of EVEN-ODD SORT.

4 / 10

Sorting on aMesh-Connected MultiComputer

function EVEN-ODD SORT(𝑎) ▷ 𝑎 is an array of size 𝑛
for 𝑘 = 1,… do
if 𝑘 is even then
Compare (and swap if needed) every even position with its right neighbor;

else (𝑘 is odd)
Compare (and swap if needed) every odd position with its right neighbor.

𝑘 = 1𝑘 = 2𝑘 = 3𝑘 = 4𝑘 = 5𝑘 = 6

𝑘 = 7

𝑘 = 8

3 13 42 47 50 48 57 50 62 66 67 92 93

𝑘 = 8

Lemma

If the array a has size 𝑛, then it is sorted after the iteration 𝑘 = 𝑛 of EVEN-ODD SORT.

4 / 10

Sorting on aMesh-Connected MultiComputer

function EVEN-ODD SORT(𝑎) ▷ 𝑎 is an array of size 𝑛
for 𝑘 = 1,… do
if 𝑘 is even then
Compare (and swap if needed) every even position with its right neighbor;

else (𝑘 is odd)
Compare (and swap if needed) every odd position with its right neighbor.

𝑘 = 1𝑘 = 2𝑘 = 3𝑘 = 4𝑘 = 5𝑘 = 6𝑘 = 7

𝑘 = 8 3 13 42 47 50 48 57 50 62 66 67 92 93

𝑘 = 8

Lemma

If the array a has size 𝑛, then it is sorted after the iteration 𝑘 = 𝑛 of EVEN-ODD SORT.

4 / 10

Sorting on aMesh-Connected MultiComputer

function EVEN-ODD SORT(𝑎) ▷ 𝑎 is an array of size 𝑛
for 𝑘 = 1,… do
if 𝑘 is even then
Compare (and swap if needed) every even position with its right neighbor;

else (𝑘 is odd)
Compare (and swap if needed) every odd position with its right neighbor.

𝑘 = 1𝑘 = 2𝑘 = 3𝑘 = 4𝑘 = 5𝑘 = 6𝑘 = 7

𝑘 = 8

𝑘 = 8

3 13 42 47 48 50 50 57 62 66 67 92 93

Lemma

If the array a has size 𝑛, then it is sorted after the iteration 𝑘 = 𝑛 of EVEN-ODD SORT.

4 / 10

Sorting on aMesh-Connected MultiComputer

function EVEN-ODD SORT(𝑎) ▷ 𝑎 is an array of size 𝑛
for 𝑘 = 1,… do
if 𝑘 is even then
Compare (and swap if needed) every even position with its right neighbor;

else (𝑘 is odd)
Compare (and swap if needed) every odd position with its right neighbor.

𝑘 = 1𝑘 = 2𝑘 = 3𝑘 = 4𝑘 = 5𝑘 = 6𝑘 = 7𝑘 = 8

𝑘 = 8 3 13 42 47 48 50 50 57 62 66 67 92 93

Lemma

If the array a has size 𝑛, then it is sorted after the iteration 𝑘 = 𝑛 of EVEN-ODD SORT.

Sketch of proof.

𝑘 = 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

𝑘 = 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0𝑘 = 3 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0𝑘 = 4 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0𝑘 = 5 1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0

4 / 10

Sorting on aMesh-Connected MultiComputer

function EVEN-ODD SORT(𝑎) ▷ 𝑎 is an array of size 𝑛
for 𝑘 = 1,… do
if 𝑘 is even then
Compare (and swap if needed) every even position with its right neighbor;

else (𝑘 is odd)
Compare (and swap if needed) every odd position with its right neighbor.

𝑘 = 1𝑘 = 2𝑘 = 3𝑘 = 4𝑘 = 5𝑘 = 6𝑘 = 7𝑘 = 8

𝑘 = 8 3 13 42 47 48 50 50 57 62 66 67 92 93

Lemma

If the array a has size 𝑛, then it is sorted after the iteration 𝑘 = 𝑛 of EVEN-ODD SORT.

Sketch of proof.

𝑘 = 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

𝑘 = 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

𝑘 = 3 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0𝑘 = 4 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0𝑘 = 5 1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0

4 / 10

Sorting on aMesh-Connected MultiComputer

function EVEN-ODD SORT(𝑎) ▷ 𝑎 is an array of size 𝑛
for 𝑘 = 1,… do
if 𝑘 is even then
Compare (and swap if needed) every even position with its right neighbor;

else (𝑘 is odd)
Compare (and swap if needed) every odd position with its right neighbor.

𝑘 = 1𝑘 = 2𝑘 = 3𝑘 = 4𝑘 = 5𝑘 = 6𝑘 = 7𝑘 = 8

𝑘 = 8 3 13 42 47 48 50 50 57 62 66 67 92 93

Lemma

If the array a has size 𝑛, then it is sorted after the iteration 𝑘 = 𝑛 of EVEN-ODD SORT.

Sketch of proof.

𝑘 = 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0𝑘 = 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

𝑘 = 3 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0

𝑘 = 4 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0𝑘 = 5 1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0

4 / 10

Sorting on aMesh-Connected MultiComputer

function EVEN-ODD SORT(𝑎) ▷ 𝑎 is an array of size 𝑛
for 𝑘 = 1,… do
if 𝑘 is even then
Compare (and swap if needed) every even position with its right neighbor;

else (𝑘 is odd)
Compare (and swap if needed) every odd position with its right neighbor.

𝑘 = 1𝑘 = 2𝑘 = 3𝑘 = 4𝑘 = 5𝑘 = 6𝑘 = 7𝑘 = 8

𝑘 = 8 3 13 42 47 48 50 50 57 62 66 67 92 93

Lemma

If the array a has size 𝑛, then it is sorted after the iteration 𝑘 = 𝑛 of EVEN-ODD SORT.

Sketch of proof.

𝑘 = 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0𝑘 = 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0𝑘 = 3 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0

𝑘 = 4 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0

𝑘 = 5 1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0

4 / 10

Sorting on aMesh-Connected MultiComputer

function EVEN-ODD SORT(𝑎) ▷ 𝑎 is an array of size 𝑛
for 𝑘 = 1,… do
if 𝑘 is even then
Compare (and swap if needed) every even position with its right neighbor;

else (𝑘 is odd)
Compare (and swap if needed) every odd position with its right neighbor.

𝑘 = 1𝑘 = 2𝑘 = 3𝑘 = 4𝑘 = 5𝑘 = 6𝑘 = 7𝑘 = 8

𝑘 = 8 3 13 42 47 48 50 50 57 62 66 67 92 93

Lemma

If the array a has size 𝑛, then it is sorted after the iteration 𝑘 = 𝑛 of EVEN-ODD SORT.

Sketch of proof.

𝑘 = 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0𝑘 = 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0𝑘 = 3 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0𝑘 = 4 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0

𝑘 = 5 1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0

4 / 10

Sorting on aMesh-Connected MultiComputer

function EVEN-ODD SORT(𝑎) ▷ 𝑎 is an array of size 𝑛
for 𝑘 = 1,… do
if 𝑘 is even then
Compare (and swap if needed) every even position with its right neighbor;

else (𝑘 is odd)
Compare (and swap if needed) every odd position with its right neighbor.

𝑘 = 1𝑘 = 2𝑘 = 3𝑘 = 4𝑘 = 5𝑘 = 6𝑘 = 7𝑘 = 8

𝑘 = 8 3 13 42 47 48 50 50 57 62 66 67 92 93

Lemma

If the array a has size 𝑛, then it is sorted after the iteration 𝑘 = 𝑛 of EVEN-ODD SORT.

Corollary

The SORTING problem on MCMCs can be solved in time 𝑂(𝑛) on arrays of size 𝑛.

4 / 10

Sorting on a 2DMesh-Connected MultiComputer

5 / 10

Sorting on a 2DMesh-Connected MultiComputer

5 / 10

Sorting on a 2DMesh-Connected MultiComputer

5 / 10

Sorting on a 2DMesh-Connected MultiComputer

5 / 10

Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

3 62 50 42 67 13 57 66 47 93
92 48 50 13 92 96 18 50 14 53
20 56 61 58 95 68 45 79 78 12
5 11 82 99 11 14 47 89 43 1
48 39 24 18 21 50 37 21 12 30
75 16 59 88 72 4 90 53 3 3
32 97 20 43 45 60 79 23 71 89
55 8 9 50 13 94 77 50 24 28
91 5 24 80 85 43 39 53 60 67
11 80 47 13 33 5 9 99 77 24

𝑘 = 1𝑘 = 2𝑘 = 3𝑘 = 4

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.

6 / 10

Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

𝑘 = 1

3 62 50 42 67 13 57 66 47 93
92 48 50 13 92 96 18 50 14 53
20 56 61 58 95 68 45 79 78 12
5 11 82 99 11 14 47 89 43 1
48 39 24 18 21 50 37 21 12 30
75 16 59 88 72 4 90 53 3 3
32 97 20 43 45 60 79 23 71 89
55 8 9 50 13 94 77 50 24 28
91 5 24 80 85 43 39 53 60 67
11 80 47 13 33 5 9 99 77 24

𝑘 = 2𝑘 = 3𝑘 = 4

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.

6 / 10

Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

𝑘 = 1

3 62 50 42 67 13 57 66 47 93
92 48 50 13 92 96 18 50 14 53
20 56 61 58 95 68 45 79 78 12
5 11 82 99 11 14 47 89 43 1
48 39 24 18 21 50 37 21 12 30
75 16 59 88 72 4 90 53 3 3
32 97 20 43 45 60 79 23 71 89
55 8 9 50 13 94 77 50 24 28
91 5 24 80 85 43 39 53 60 67
5 9 11 13 24 33 47 77 80 99

𝑘 = 2𝑘 = 3𝑘 = 4

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.

6 / 10

Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

𝑘 = 1

3 62 50 42 67 13 57 66 47 93
92 48 50 13 92 96 18 50 14 53
20 56 61 58 95 68 45 79 78 12
5 11 82 99 11 14 47 89 43 1
48 39 24 18 21 50 37 21 12 30
75 16 59 88 72 4 90 53 3 3
32 97 20 43 45 60 79 23 71 89
55 8 9 50 13 94 77 50 24 28
91 5 24 80 85 43 39 53 60 67
5 9 11 13 24 33 47 77 80 99

𝑘 = 2𝑘 = 3𝑘 = 4

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.

6 / 10

Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

𝑘 = 1

3 62 50 42 67 13 57 66 47 93
92 48 50 13 92 96 18 50 14 53
20 56 61 58 95 68 45 79 78 12
5 11 82 99 11 14 47 89 43 1
48 39 24 18 21 50 37 21 12 30
75 16 59 88 72 4 90 53 3 3
32 97 20 43 45 60 79 23 71 89
55 8 9 50 13 94 77 50 24 28
91 85 80 67 60 53 43 39 24 5
5 9 11 13 24 33 47 77 80 99

𝑘 = 2𝑘 = 3𝑘 = 4

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.

6 / 10

Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

𝑘 = 1

3 62 50 42 67 13 57 66 47 93
92 48 50 13 92 96 18 50 14 53
20 56 61 58 95 68 45 79 78 12
5 11 82 99 11 14 47 89 43 1
48 39 24 18 21 50 37 21 12 30
75 16 59 88 72 4 90 53 3 3
32 97 20 43 45 60 79 23 71 89
55 8 9 50 13 94 77 50 24 28
91 85 80 67 60 53 43 39 24 5
5 9 11 13 24 33 47 77 80 99

𝑘 = 2𝑘 = 3𝑘 = 4

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.

6 / 10

Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

𝑘 = 1

3 62 50 42 67 13 57 66 47 93
92 48 50 13 92 96 18 50 14 53
20 56 61 58 95 68 45 79 78 12
5 11 82 99 11 14 47 89 43 1
48 39 24 18 21 50 37 21 12 30
75 16 59 88 72 4 90 53 3 3
32 97 20 43 45 60 79 23 71 89
8 9 13 24 28 50 50 55 77 94
91 85 80 67 60 53 43 39 24 5
5 9 11 13 24 33 47 77 80 99

𝑘 = 2𝑘 = 3𝑘 = 4

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.

6 / 10

Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

𝑘 = 1

3 62 50 42 67 13 57 66 47 93
92 48 50 13 92 96 18 50 14 53
20 56 61 58 95 68 45 79 78 12
5 11 82 99 11 14 47 89 43 1
48 39 24 18 21 50 37 21 12 30
75 16 59 88 72 4 90 53 3 3
32 97 20 43 45 60 79 23 71 89
8 9 13 24 28 50 50 55 77 94
91 85 80 67 60 53 43 39 24 5
5 9 11 13 24 33 47 77 80 99

𝑘 = 2𝑘 = 3𝑘 = 4

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.

6 / 10

Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

𝑘 = 1

3 62 50 42 67 13 57 66 47 93
92 48 50 13 92 96 18 50 14 53
20 56 61 58 95 68 45 79 78 12
5 11 82 99 11 14 47 89 43 1
48 39 24 18 21 50 37 21 12 30
75 16 59 88 72 4 90 53 3 3
97 89 79 71 60 45 43 32 23 20
8 9 13 24 28 50 50 55 77 94
91 85 80 67 60 53 43 39 24 5
5 9 11 13 24 33 47 77 80 99

𝑘 = 2𝑘 = 3𝑘 = 4

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.

6 / 10

Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

𝑘 = 1

93 67 66 62 57 50 47 42 13 3
13 14 18 48 50 50 53 92 92 96
95 79 78 68 61 58 56 45 20 12
1 5 11 11 14 43 47 82 89 99
50 48 39 37 30 24 21 21 18 12
3 3 4 16 53 59 72 75 88 90
97 89 79 71 60 45 43 32 23 20
8 9 13 24 28 50 50 55 77 94
91 85 80 67 60 53 43 39 24 5
5 9 11 13 24 33 47 77 80 99

𝑘 = 2𝑘 = 3𝑘 = 4

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.

6 / 10

Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

𝑘 = 1

93 67 66 62 57 50 47 42 13 3
13 14 18 48 50 50 53 92 92 96
95 79 78 68 61 58 56 45 20 12
1 5 11 11 14 43 47 82 89 99
50 48 39 37 30 24 21 21 18 12
3 3 4 16 53 59 72 75 88 90
97 89 79 71 60 45 43 32 23 20
8 9 13 24 28 50 50 55 77 94
91 85 80 67 60 53 43 39 24 5
5 9 11 13 24 33 47 77 80 99

𝑘 = 2𝑘 = 3𝑘 = 4

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.

6 / 10

Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

𝑘 = 1

97 67 66 62 57 50 47 42 13 3
95 14 18 48 50 50 53 92 92 96
93 79 78 68 61 58 56 45 20 12
91 5 11 11 14 43 47 82 89 99
50 48 39 37 30 24 21 21 18 12
13 3 4 16 53 59 72 75 88 90
8 89 79 71 60 45 43 32 23 20
5 9 13 24 28 50 50 55 77 94
3 85 80 67 60 53 43 39 24 5
1 9 11 13 24 33 47 77 80 99

𝑘 = 2𝑘 = 3𝑘 = 4

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.

6 / 10

Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

𝑘 = 1

97 89 80 71 61 59 72 92 92 99
95 85 79 68 60 58 56 82 89 99
93 79 78 67 60 53 53 77 88 96
91 67 66 62 57 50 50 75 80 94
50 48 39 48 53 50 47 55 77 90
13 14 18 37 50 50 47 45 24 20
8 9 13 24 30 45 47 42 23 12
5 9 11 16 28 43 43 39 20 12
3 5 11 13 24 33 43 32 18 5
1 3 4 11 14 24 21 21 13 3

𝑘 = 2𝑘 = 3𝑘 = 4

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.

6 / 10

Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

𝑘 = 1

𝑘 = 2

99 97 92 92 89 80 72 71 61 59
56 58 60 68 79 82 85 89 95 99
96 93 88 79 78 77 67 60 53 53
50 50 57 62 66 67 75 80 91 94
90 77 55 53 50 50 48 48 47 39
13 14 18 20 24 37 45 47 50 50
47 45 42 30 24 23 13 12 9 8
5 9 11 12 16 20 28 39 43 43
43 33 32 24 18 13 11 5 5 3
1 3 3 4 11 13 14 21 21 24

𝑘 = 3𝑘 = 4

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.

6 / 10

Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

𝑘 = 1

𝑘 = 2

99 97 92 92 89 82 85 89 95 99
96 93 88 79 79 80 75 80 91 94
90 77 60 68 78 77 72 71 61 59
56 58 57 62 66 67 67 60 53 53
50 50 55 53 50 50 48 48 50 50
47 45 42 30 24 37 45 47 47 43
43 33 32 24 24 23 28 39 43 39
13 14 18 20 18 20 14 21 21 24
5 9 11 12 16 13 13 12 9 8
1 3 3 4 11 13 11 5 5 3

𝑘 = 3𝑘 = 4

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.

6 / 10

Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

𝑘 = 1𝑘 = 2

𝑘 = 3

99 99 97 95 92 92 89 89 85 82
75 79 79 80 80 88 91 93 94 96
90 78 77 77 72 71 68 61 60 59
53 53 56 57 58 60 62 66 67 67
55 53 50 50 50 50 50 50 48 48
24 30 37 42 43 45 45 47 47 47
43 43 39 39 33 32 28 24 24 23
13 14 14 18 18 20 20 21 21 24
16 13 13 12 12 11 9 9 8 5
1 3 3 3 4 5 5 11 11 13

𝑘 = 4

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.

6 / 10

Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

𝑘 = 1𝑘 = 2

𝑘 = 3

99 99 97 95 92 92 91 93 94 96
90 79 79 80 80 88 89 89 85 82
75 78 77 77 72 71 68 66 67 67
55 53 56 57 58 60 62 61 60 59
53 53 50 50 50 50 50 50 48 48
43 43 39 42 43 45 45 47 47 47
24 30 37 39 33 32 28 24 24 24
16 14 14 18 18 20 20 21 21 23
13 13 13 12 12 11 9 11 11 13
1 3 3 3 4 5 5 9 8 5

𝑘 = 4

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.

6 / 10

Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

𝑘 = 1𝑘 = 2𝑘 = 3

𝑘 = 4

99 99 97 96 95 94 93 92 92 91
79 79 80 80 82 85 88 89 89 90
78 77 77 75 72 71 68 67 67 66
53 55 56 57 58 59 60 60 61 62
53 53 50 50 50 50 50 50 48 48
39 42 43 43 43 45 45 47 47 47
39 37 33 32 30 28 24 24 24 24
14 14 16 18 18 20 20 21 21 23
13 13 13 13 12 12 11 11 11 9
1 3 3 3 4 5 5 5 8 9

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.

6 / 10

Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

𝑘 = 1𝑘 = 2𝑘 = 3

𝑘 = 4

99 99 97 96 95 94 93 92 92 91
79 79 80 80 82 85 88 89 89 90
78 77 77 75 72 71 68 67 67 66
53 55 56 57 58 59 60 60 61 62
53 53 50 50 50 50 50 50 48 48
39 42 43 43 43 45 45 47 47 47
39 37 33 32 30 28 24 24 24 24
14 14 16 18 18 20 20 21 21 23
13 13 13 13 12 12 11 11 11 9
1 3 3 3 4 5 5 5 8 9

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.

6 / 10

Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

𝑘 = 1𝑘 = 2𝑘 = 3𝑘 = 4

99 99 97 96 95 94 93 92 92 91
79 79 80 80 82 85 88 89 89 90
78 77 77 75 72 71 68 67 67 66
53 55 56 57 58 59 60 60 61 62
53 53 50 50 50 50 50 50 48 48
39 42 43 43 43 45 45 47 47 47
39 37 33 32 30 28 24 24 24 24
14 14 16 18 18 20 20 21 21 23
13 13 13 13 12 12 11 11 11 9
1 3 3 3 4 5 5 5 8 9

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.

6 / 10

Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.

Sketch of proof.

0
1

0
1

0
0

0
0

1
0

1
0

1
0

1
0

1
0

1
0

The number of “mixed” rows is halved after each iteration, hence log
2
(
√
𝑛) iterations.

6 / 10

Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.

Sketch of proof.

0
1

0
1

0
0

0
0

0
1

0
1

0
1

0
1

0
1

0
1

The number of “mixed” rows is halved after each iteration, hence log
2
(
√
𝑛) iterations.

6 / 10

Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.

Sketch of proof.

0
1

0
1

0
0

0
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

1
1

1
1

1
1

1
0

1
0

1
0

The number of “mixed” rows is halved after each iteration, hence log
2
(
√
𝑛) iterations.

6 / 10

Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.

Sketch of proof.

0
1

0
1

0
0

0
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

1
1

1
1

1
1

0
1

0
1

0
1

The number of “mixed” rows is halved after each iteration, hence log
2
(
√
𝑛) iterations.

6 / 10

Sorting on a 2DMesh-Connected MultiComputer

function SNAKE SORT(𝑎) ▷ 𝑎 is an array of size
√
𝑛×

√
𝑛

for 𝑘 = 1,… do
Sort rows in increasing and decreasing order alternatively;
Sort columns in increasing order.

Lemma

An array of size
√
𝑛×

√
𝑛 is sorted after the iteration 𝑘 = log

2
(
√
𝑛) + 1.

Sketch of proof.

0
1

0
1

0
0

0
0

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

1
1

1
1

1
1

0
1

0
1

0
1

The number of “mixed” rows is halved after each iteration, hence log
2
(
√
𝑛) iterations.

Corollary

The SORTING problem on MCMCs can be solved in time 𝑂(
√
𝑛 ⋅ log𝑛) on arrays of size

√
𝑛×

√
𝑛.

6 / 10

Sorting on a 𝑑-dimensional Mesh-Connected MultiComputer
Snake ordering generalizes to higher dimensions:

0

1

2

3

3
28

35
60

7

6

5

4

4
27
36

59

8

9

10

11

11

20

43
52

15
15

16

47

48

14
14

17

46

49

13
13

18

45

50

12

12
12

19
19

44
44

51
51

Theorem ([Corbett & Scherson, 1992])

The SORTING problem onMCMCs can be solved in time𝑂(𝑑
√
𝑛⋅log𝑛) on arrays of size 𝑑

√
𝑛×⋯× 𝑑

√
𝑛⏟⏟⏟⏟⏟⏟⏟

𝑑 times

.

7 / 10

Sorting on a 𝑑-dimensional Mesh-Connected MultiComputer
Snake ordering generalizes to higher dimensions:

0

1

2

3

3
28

35
60

7

6

5

4

4
27
36

59

8

9

10

11

11

20

43
52

15
15

16

47

48

14
14

17

46

49

13
13

18

45

50

12

12
12

19
19

44
44

51
51

Theorem ([Corbett & Scherson, 1992] [Nassimi & Sahni, 1979])

The SORTING problem onMCMCs can be solved in time𝑂(𝑑
√
𝑛⋅log𝑛) on arrays of size 𝑑

√
𝑛×⋯× 𝑑

√
𝑛⏟⏟⏟⏟⏟⏟⏟

𝑑 times

.

7 / 10

Fast computing with tilings

The RAMmodel

Definition

A Random Access Machine is composed of:
▶ A finite sequence of instructions called a program (and an instruction pointer addressing the in-
struction currently being executed);

▶ A finite set of variables var1,… , var𝑘, each containing an integer;
▶ Amemory array𝑀 composed of infinitely manymemory cells (𝑀𝑖)𝑖∈ℕ, each containing an integer.

Instructions are of two types:
▶ Arithmetic instructions on variables, e.g. var𝑖 ← var𝑗 + var𝑘;
▶ Memory instructions, either reading var𝑖 ←𝑀𝑗 or writing𝑀𝑖 ← var𝑗.

Lemma

The RAMmodel is Turing-complete.

8 / 10

The RAMmodel

Definition

A Random Access Machine is composed of:
▶ A finite sequence of instructions called a program (and an instruction pointer addressing the in-
struction currently being executed);

▶ A finite set of variables var1,… , var𝑘, each containing an integer;
▶ Amemory array𝑀 composed of infinitely manymemory cells (𝑀𝑖)𝑖∈ℕ, each containing an integer.

Instructions are of two types:
▶ Arithmetic instructions on variables, e.g. var𝑖 ← var𝑗 + var𝑘;
▶ Memory instructions, either reading var𝑖 ←𝑀𝑗 or writing𝑀𝑖 ← var𝑗.

Lemma

The RAMmodel is Turing-complete.

8 / 10

Simulating RAM computations with Mesh-Connected MultiComputers

Fix 𝑛 ∈ ℕ. We simulate 𝑛 computations steps of a RAM program p in an MCMC of size 𝑛:

9 / 10

Simulating RAM computations with Mesh-Connected MultiComputers

Fix 𝑛 ∈ ℕ. We simulate 𝑛 computations steps of a RAM program p in an MCMC of size 𝑛:

▶
function FIBONACCI

var𝑎 ← 1;
var𝑏 ← 1;
for 𝑖 = 1,… , 10 do

var𝑐 ← var𝑎 + var𝑏;
var𝑎 ← var𝑏;
var𝑏 ← var𝑐;
𝑀𝑖 ← var𝑏;

var𝑐 ← 𝑀10;
var𝑐 ← var𝑐 + 4;

var𝑎 = 1

var𝑎 = 1
var𝑏 = 1

var𝑎 = 1
var𝑏 = 1
var𝑐 = 2

var𝑎 = 1
var𝑏 = 1
var𝑐 = 2

var𝑎 = 1
var𝑏 = 2
var𝑐 = 2

(addr = 1, time = 6, WRITE, value = 2)

var𝑎 = 1
var𝑏 = 2
var𝑐 = 2

var𝑎 = 1
var𝑏 = 2
var𝑐 = 3

var𝑎 = 89
var𝑏 = 144
var𝑐 = 144

(addr = 10, time = 42, WRITE, value = 144)

var𝑎 = 89
var𝑏 = 144
var𝑐 = 144

(addr = 10, time = 43, READ, value = 38)

var𝑎 = 89
var𝑏 = 144
var𝑐 = 38

var𝑎 = 89
var𝑏 = 144
var𝑐 = 42

At the end of the procedure, we have a list of records of the form:
▶ Writing records: (addr, time, WRITE, value);
▶ Reading records: (addr, time, READ, value);

By sorting this list in lexicographic order, we can check in time 𝑂(1) the consistency of the memory guesses!

9 / 10

Simulating RAM computations with Mesh-Connected MultiComputers

Fix 𝑛 ∈ ℕ. We simulate 𝑛 computations steps of a RAM program p in an MCMC of size 𝑛:

▶

function FIBONACCI
var𝑎 ← 1;
var𝑏 ← 1;
for 𝑖 = 1,… , 10 do

var𝑐 ← var𝑎 + var𝑏;
var𝑎 ← var𝑏;
var𝑏 ← var𝑐;
𝑀𝑖 ← var𝑏;

var𝑐 ← 𝑀10;
var𝑐 ← var𝑐 + 4;

var𝑎 = 1
var𝑎 = 1
var𝑏 = 1

var𝑎 = 1
var𝑏 = 1
var𝑐 = 2

var𝑎 = 1
var𝑏 = 1
var𝑐 = 2

var𝑎 = 1
var𝑏 = 2
var𝑐 = 2

(addr = 1, time = 6, WRITE, value = 2)

var𝑎 = 1
var𝑏 = 2
var𝑐 = 2

var𝑎 = 1
var𝑏 = 2
var𝑐 = 3

var𝑎 = 89
var𝑏 = 144
var𝑐 = 144

(addr = 10, time = 42, WRITE, value = 144)

var𝑎 = 89
var𝑏 = 144
var𝑐 = 144

(addr = 10, time = 43, READ, value = 38)

var𝑎 = 89
var𝑏 = 144
var𝑐 = 38

var𝑎 = 89
var𝑏 = 144
var𝑐 = 42

At the end of the procedure, we have a list of records of the form:
▶ Writing records: (addr, time, WRITE, value);
▶ Reading records: (addr, time, READ, value);

By sorting this list in lexicographic order, we can check in time 𝑂(1) the consistency of the memory guesses!

9 / 10

Simulating RAM computations with Mesh-Connected MultiComputers

Fix 𝑛 ∈ ℕ. We simulate 𝑛 computations steps of a RAM program p in an MCMC of size 𝑛:

▶

function FIBONACCI
var𝑎 ← 1;
var𝑏 ← 1;
for 𝑖 = 1,… , 10 do

var𝑐 ← var𝑎 + var𝑏;
var𝑎 ← var𝑏;
var𝑏 ← var𝑐;
𝑀𝑖 ← var𝑏;

var𝑐 ← 𝑀10;
var𝑐 ← var𝑐 + 4;

var𝑎 = 1
var𝑎 = 1
var𝑏 = 1

var𝑎 = 1
var𝑏 = 1
var𝑐 = 2

var𝑎 = 1
var𝑏 = 1
var𝑐 = 2

var𝑎 = 1
var𝑏 = 2
var𝑐 = 2

(addr = 1, time = 6, WRITE, value = 2)

var𝑎 = 1
var𝑏 = 2
var𝑐 = 2

var𝑎 = 1
var𝑏 = 2
var𝑐 = 3

var𝑎 = 89
var𝑏 = 144
var𝑐 = 144

(addr = 10, time = 42, WRITE, value = 144)

var𝑎 = 89
var𝑏 = 144
var𝑐 = 144

(addr = 10, time = 43, READ, value = 38)

var𝑎 = 89
var𝑏 = 144
var𝑐 = 38

var𝑎 = 89
var𝑏 = 144
var𝑐 = 42

At the end of the procedure, we have a list of records of the form:
▶ Writing records: (addr, time, WRITE, value);
▶ Reading records: (addr, time, READ, value);

By sorting this list in lexicographic order, we can check in time 𝑂(1) the consistency of the memory guesses!

9 / 10

Simulating RAM computations with Mesh-Connected MultiComputers

Fix 𝑛 ∈ ℕ. We simulate 𝑛 computations steps of a RAM program p in an MCMC of size 𝑛:

▶

function FIBONACCI
var𝑎 ← 1;
var𝑏 ← 1;
for 𝑖 = 1,… , 10 do

var𝑐 ← var𝑎 + var𝑏;
var𝑎 ← var𝑏;
var𝑏 ← var𝑐;
𝑀𝑖 ← var𝑏;

var𝑐 ← 𝑀10;
var𝑐 ← var𝑐 + 4;

var𝑎 = 1
var𝑎 = 1
var𝑏 = 1

var𝑎 = 1
var𝑏 = 1
var𝑐 = 2

var𝑎 = 1
var𝑏 = 1
var𝑐 = 2

var𝑎 = 1
var𝑏 = 2
var𝑐 = 2

(addr = 1, time = 6, WRITE, value = 2)

var𝑎 = 1
var𝑏 = 2
var𝑐 = 2

var𝑎 = 1
var𝑏 = 2
var𝑐 = 3

var𝑎 = 89
var𝑏 = 144
var𝑐 = 144

(addr = 10, time = 42, WRITE, value = 144)

var𝑎 = 89
var𝑏 = 144
var𝑐 = 144

(addr = 10, time = 43, READ, value = 38)

var𝑎 = 89
var𝑏 = 144
var𝑐 = 38

var𝑎 = 89
var𝑏 = 144
var𝑐 = 42

At the end of the procedure, we have a list of records of the form:
▶ Writing records: (addr, time, WRITE, value);
▶ Reading records: (addr, time, READ, value);

By sorting this list in lexicographic order, we can check in time 𝑂(1) the consistency of the memory guesses!

9 / 10

Simulating RAM computations with Mesh-Connected MultiComputers

Fix 𝑛 ∈ ℕ. We simulate 𝑛 computations steps of a RAM program p in an MCMC of size 𝑛:

▶

function FIBONACCI
var𝑎 ← 1;
var𝑏 ← 1;
for 𝑖 = 1,… , 10 do

var𝑐 ← var𝑎 + var𝑏;
var𝑎 ← var𝑏;
var𝑏 ← var𝑐;
𝑀𝑖 ← var𝑏;

var𝑐 ← 𝑀10;
var𝑐 ← var𝑐 + 4;

var𝑎 = 1
var𝑎 = 1
var𝑏 = 1

var𝑎 = 1
var𝑏 = 1
var𝑐 = 2

var𝑎 = 1
var𝑏 = 1
var𝑐 = 2

var𝑎 = 1
var𝑏 = 2
var𝑐 = 2

(addr = 1, time = 6, WRITE, value = 2)

var𝑎 = 1
var𝑏 = 2
var𝑐 = 2

var𝑎 = 1
var𝑏 = 2
var𝑐 = 3

var𝑎 = 89
var𝑏 = 144
var𝑐 = 144

(addr = 10, time = 42, WRITE, value = 144)

var𝑎 = 89
var𝑏 = 144
var𝑐 = 144

(addr = 10, time = 43, READ, value = 38)

var𝑎 = 89
var𝑏 = 144
var𝑐 = 38

var𝑎 = 89
var𝑏 = 144
var𝑐 = 42

At the end of the procedure, we have a list of records of the form:
▶ Writing records: (addr, time, WRITE, value);
▶ Reading records: (addr, time, READ, value);

By sorting this list in lexicographic order, we can check in time 𝑂(1) the consistency of the memory guesses!

9 / 10

Simulating RAM computations with Mesh-Connected MultiComputers

Fix 𝑛 ∈ ℕ. We simulate 𝑛 computations steps of a RAM program p in an MCMC of size 𝑛:

▶

function FIBONACCI
var𝑎 ← 1;
var𝑏 ← 1;
for 𝑖 = 1,… , 10 do

var𝑐 ← var𝑎 + var𝑏;
var𝑎 ← var𝑏;
var𝑏 ← var𝑐;
𝑀𝑖 ← var𝑏;

var𝑐 ← 𝑀10;
var𝑐 ← var𝑐 + 4;

var𝑎 = 1
var𝑎 = 1
var𝑏 = 1

var𝑎 = 1
var𝑏 = 1
var𝑐 = 2

var𝑎 = 1
var𝑏 = 1
var𝑐 = 2

var𝑎 = 1
var𝑏 = 2
var𝑐 = 2

(addr = 1, time = 6, WRITE, value = 2)

var𝑎 = 1
var𝑏 = 2
var𝑐 = 2

var𝑎 = 1
var𝑏 = 2
var𝑐 = 3

var𝑎 = 89
var𝑏 = 144
var𝑐 = 144

(addr = 10, time = 42, WRITE, value = 144)

var𝑎 = 89
var𝑏 = 144
var𝑐 = 144

(addr = 10, time = 43, READ, value = 38)

var𝑎 = 89
var𝑏 = 144
var𝑐 = 38

var𝑎 = 89
var𝑏 = 144
var𝑐 = 42

At the end of the procedure, we have a list of records of the form:
▶ Writing records: (addr, time, WRITE, value);
▶ Reading records: (addr, time, READ, value);

By sorting this list in lexicographic order, we can check in time 𝑂(1) the consistency of the memory guesses!

9 / 10

Simulating RAM computations with Mesh-Connected MultiComputers

Fix 𝑛 ∈ ℕ. We simulate 𝑛 computations steps of a RAM program p in an MCMC of size 𝑛:

▶

function FIBONACCI
var𝑎 ← 1;
var𝑏 ← 1;
for 𝑖 = 1,… , 10 do

var𝑐 ← var𝑎 + var𝑏;
var𝑎 ← var𝑏;
var𝑏 ← var𝑐;
𝑀𝑖 ← var𝑏;

var𝑐 ← 𝑀10;
var𝑐 ← var𝑐 + 4;

var𝑎 = 1
var𝑎 = 1
var𝑏 = 1

var𝑎 = 1
var𝑏 = 1
var𝑐 = 2

var𝑎 = 1
var𝑏 = 1
var𝑐 = 2

var𝑎 = 1
var𝑏 = 2
var𝑐 = 2

(addr = 1, time = 6, WRITE, value = 2)

var𝑎 = 1
var𝑏 = 2
var𝑐 = 2

var𝑎 = 1
var𝑏 = 2
var𝑐 = 3

var𝑎 = 89
var𝑏 = 144
var𝑐 = 144

(addr = 10, time = 42, WRITE, value = 144)

var𝑎 = 89
var𝑏 = 144
var𝑐 = 144

(addr = 10, time = 43, READ, value = 38)

var𝑎 = 89
var𝑏 = 144
var𝑐 = 38

var𝑎 = 89
var𝑏 = 144
var𝑐 = 42

At the end of the procedure, we have a list of records of the form:
▶ Writing records: (addr, time, WRITE, value);
▶ Reading records: (addr, time, READ, value);

By sorting this list in lexicographic order, we can check in time 𝑂(1) the consistency of the memory guesses!

9 / 10

Simulating RAM computations with Mesh-Connected MultiComputers

Fix 𝑛 ∈ ℕ. We simulate 𝑛 computations steps of a RAM program p in an MCMC of size 𝑛:

▶

function FIBONACCI
var𝑎 ← 1;
var𝑏 ← 1;
for 𝑖 = 1,… , 10 do

var𝑐 ← var𝑎 + var𝑏;
var𝑎 ← var𝑏;
var𝑏 ← var𝑐;
𝑀𝑖 ← var𝑏;

var𝑐 ← 𝑀10;
var𝑐 ← var𝑐 + 4;

var𝑎 = 1
var𝑎 = 1
var𝑏 = 1

var𝑎 = 1
var𝑏 = 1
var𝑐 = 2

var𝑎 = 1
var𝑏 = 1
var𝑐 = 2

var𝑎 = 1
var𝑏 = 2
var𝑐 = 2

(addr = 1, time = 6, WRITE, value = 2)

var𝑎 = 1
var𝑏 = 2
var𝑐 = 2

var𝑎 = 1
var𝑏 = 2
var𝑐 = 3

var𝑎 = 89
var𝑏 = 144
var𝑐 = 144

(addr = 10, time = 42, WRITE, value = 144)

var𝑎 = 89
var𝑏 = 144
var𝑐 = 144

(addr = 10, time = 43, READ, value = 38)

var𝑎 = 89
var𝑏 = 144
var𝑐 = 38

var𝑎 = 89
var𝑏 = 144
var𝑐 = 42

At the end of the procedure, we have a list of records of the form:
▶ Writing records: (addr, time, WRITE, value);
▶ Reading records: (addr, time, READ, value);

By sorting this list in lexicographic order, we can check in time 𝑂(1) the consistency of the memory guesses!

9 / 10

Simulating RAM computations with Mesh-Connected MultiComputers

Fix 𝑛 ∈ ℕ. We simulate 𝑛 computations steps of a RAM program p in an MCMC of size 𝑛:

▶

function FIBONACCI
var𝑎 ← 1;
var𝑏 ← 1;
for 𝑖 = 1,… , 10 do

var𝑐 ← var𝑎 + var𝑏;
var𝑎 ← var𝑏;
var𝑏 ← var𝑐;
𝑀𝑖 ← var𝑏;

var𝑐 ← 𝑀10;
var𝑐 ← var𝑐 + 4;

var𝑎 = 1
var𝑎 = 1
var𝑏 = 1

var𝑎 = 1
var𝑏 = 1
var𝑐 = 2

var𝑎 = 1
var𝑏 = 1
var𝑐 = 2

var𝑎 = 1
var𝑏 = 2
var𝑐 = 2

(addr = 1, time = 6, WRITE, value = 2)

var𝑎 = 1
var𝑏 = 2
var𝑐 = 2

var𝑎 = 1
var𝑏 = 2
var𝑐 = 3

var𝑎 = 89
var𝑏 = 144
var𝑐 = 144

(addr = 10, time = 42, WRITE, value = 144)

var𝑎 = 89
var𝑏 = 144
var𝑐 = 144

(addr = 10, time = 43, READ, value = 38)

var𝑎 = 89
var𝑏 = 144
var𝑐 = 38

var𝑎 = 89
var𝑏 = 144
var𝑐 = 42

At the end of the procedure, we have a list of records of the form:
▶ Writing records: (addr, time, WRITE, value);
▶ Reading records: (addr, time, READ, value);

By sorting this list in lexicographic order, we can check in time 𝑂(1) the consistency of the memory guesses!

9 / 10

Simulating RAM computations with Mesh-Connected MultiComputers

Fix 𝑛 ∈ ℕ. We simulate 𝑛 computations steps of a RAM program p in an MCMC of size 𝑛:

▶

function FIBONACCI
var𝑎 ← 1;
var𝑏 ← 1;
for 𝑖 = 1,… , 10 do

var𝑐 ← var𝑎 + var𝑏;
var𝑎 ← var𝑏;
var𝑏 ← var𝑐;
𝑀𝑖 ← var𝑏;

var𝑐 ← 𝑀10;
var𝑐 ← var𝑐 + 4;

var𝑎 = 1
var𝑎 = 1
var𝑏 = 1

var𝑎 = 1
var𝑏 = 1
var𝑐 = 2

var𝑎 = 1
var𝑏 = 1
var𝑐 = 2

var𝑎 = 1
var𝑏 = 2
var𝑐 = 2

(addr = 1, time = 6, WRITE, value = 2)

var𝑎 = 1
var𝑏 = 2
var𝑐 = 2

var𝑎 = 1
var𝑏 = 2
var𝑐 = 3

var𝑎 = 89
var𝑏 = 144
var𝑐 = 144

(addr = 10, time = 42, WRITE, value = 144)

var𝑎 = 89
var𝑏 = 144
var𝑐 = 144

(addr = 10, time = 43, READ, value = 38)

var𝑎 = 89
var𝑏 = 144
var𝑐 = 38

var𝑎 = 89
var𝑏 = 144
var𝑐 = 42

At the end of the procedure, we have a list of records of the form:
▶ Writing records: (addr, time, WRITE, value);
▶ Reading records: (addr, time, READ, value);

By sorting this list in lexicographic order, we can check in time 𝑂(1) the consistency of the memory guesses!

9 / 10

Simulating RAM computations with Mesh-Connected MultiComputers

Fix 𝑛 ∈ ℕ. We simulate 𝑛 computations steps of a RAM program p in an MCMC of size 𝑛:

▶

function FIBONACCI
var𝑎 ← 1;
var𝑏 ← 1;
for 𝑖 = 1,… , 10 do

var𝑐 ← var𝑎 + var𝑏;
var𝑎 ← var𝑏;
var𝑏 ← var𝑐;
𝑀𝑖 ← var𝑏;

var𝑐 ← 𝑀10;
var𝑐 ← var𝑐 + 4;

var𝑎 = 1
var𝑎 = 1
var𝑏 = 1

var𝑎 = 1
var𝑏 = 1
var𝑐 = 2

var𝑎 = 1
var𝑏 = 1
var𝑐 = 2

var𝑎 = 1
var𝑏 = 2
var𝑐 = 2

(addr = 1, time = 6, WRITE, value = 2)

var𝑎 = 1
var𝑏 = 2
var𝑐 = 2

var𝑎 = 1
var𝑏 = 2
var𝑐 = 3

var𝑎 = 89
var𝑏 = 144
var𝑐 = 144

(addr = 10, time = 42, WRITE, value = 144)

var𝑎 = 89
var𝑏 = 144
var𝑐 = 144

(addr = 10, time = 43, READ, value = 38)

var𝑎 = 89
var𝑏 = 144
var𝑐 = 38

var𝑎 = 89
var𝑏 = 144
var𝑐 = 42

At the end of the procedure, we have a list of records of the form:
▶ Writing records: (addr, time, WRITE, value);
▶ Reading records: (addr, time, READ, value);

By sorting this list in lexicographic order, we can check in time 𝑂(1) the consistency of the memory guesses!

9 / 10

Simulating RAM computations with Mesh-Connected MultiComputers

Fix 𝑛 ∈ ℕ. We simulate 𝑛 computations steps of a RAM program p in an MCMC of size 𝑛:

procedure
for 𝑖 = 1,… , 𝑛 do ▷ Parallel time 𝑂(1).
The 𝑖th processor performs the 𝑖th step of the program p.
If this computation step involves a reading a memory cell (resp. writing), the processor stores amemory record
(addr, time, READ, value) (resp. (addr, time, WRITE, value)).

Sort the memory records lexicographically. ▷ Parallel time 𝑂(𝑑
√
𝑛).

Check the consistency of the memory guesses. ▷ Parallel time 𝑂(1).

9 / 10

Simulating RAM computations with Mesh-Connected MultiComputers

Fix 𝑛 ∈ ℕ. We simulate 𝑛 computations steps of a RAM program p in an MCMC of size 𝑛:

procedure
for 𝑖 = 1,… , 𝑛 do ▷ Parallel time 𝑂(1).
The 𝑖th processor performs the 𝑖th step of the program p.
If this computation step involves a reading a memory cell (resp. writing), the processor stores amemory record
(addr, time, READ, value) (resp. (addr, time, WRITE, value)).

Sort the memory records lexicographically. ▷ Parallel time 𝑂(𝑑
√
𝑛).

Check the consistency of the memory guesses. ▷ Parallel time 𝑂(1).

Theorem

A cubic 𝑑-dimensional Mesh-Connected MultiComputer of edge length 𝑛 can simulate 𝑛𝑑 steps of
RAM computations in time 𝑂(𝑛).

9 / 10

Conclusion

Take-home message

A 3-dimensional cube of size 𝑛 × 𝑛 × 𝑛 can embed 𝑂(𝑛2) steps of arbitrary RAM computations.

Actually, technical details:
▶ Integers appearing in the RAM computations should be “small enough” to fit in the memory of a single MCMC processor
(e.g. 𝑂(log𝑛) bits): ⟹ word-RAMmodel;

▶ When implementing with Wang tiles, the colors should at least contain the state of an MCMC processor (e.g. 𝑂(log𝑛) bits):
non-constant!

⟹ Mesh-Connected MultiComputers are a natural computation model for the “fixpoint construction” (Durand,
Romaschenko and Shen).

Save the date!

What can we do with this? ⟹ Prove the soficity of many multidimensional subshifts!

(June, 24th in Caen)

10 / 10

Conclusion

Take-home message

A 3-dimensional cube of size 𝑛 × 𝑛 × 𝑛 can embed 𝑂(𝑛2) steps of arbitrary RAM computations.

Actually, technical details:
▶ Integers appearing in the RAM computations should be “small enough” to fit in the memory of a single MCMC processor
(e.g. 𝑂(log𝑛) bits): ⟹ word-RAMmodel;

▶ When implementing with Wang tiles, the colors should at least contain the state of an MCMC processor (e.g. 𝑂(log𝑛) bits):
non-constant!

⟹ Mesh-Connected MultiComputers are a natural computation model for the “fixpoint construction” (Durand,
Romaschenko and Shen).

Save the date!

What can we do with this? ⟹ Prove the soficity of many multidimensional subshifts!

(June, 24th in Caen)

10 / 10

	Introduction
	Mesh-Connected MultiComputers
	Fast computing with tilings

